
BSD AND L-FUNCTIONS

1. Lecture 1: Review of arithmetic of elliptic curves

In this lecture we give a review of the basic arithmetic of elliptic curves. Proofs and
more details of (almost) everything in this lecture can be found in Silverman's book
[Sil09].

1.1. De�nition of an elliptic curve.

De�nition 1.1. An elliptic curve over a �eld k is a (smooth, proper, geometrically
connected) curve of genus 1, equipped with a speci�ed k-rational point O.

Over any �eld, any elliptic curve E may be given by a Weierstrass equation of the
form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with ai ∈ k (more precisely, E is isomorphic to the curve in P2 given by homogenizing
the above a�ne equation, with the point O being mapped to the unique point on the
line at in�nity). The condition that such an equation is smooth is that the discriminant
∆(a1, ..., a6) is non-zero. If the characteristic of k is di�erent from 2, 3 then one may in
fact �nd an equation of the form

y2 = x3 + Ax+B

(for A,B ∈ k) and then we have ∆ = −16(4A3 + 27B2).
The set of k-rational points E(k) (or E(k̄) for that matter) naturally form a group

(either via the classical chord-tangent process or, equivalently, by checking that P 7→
(P )− (O) is a bijection between E(k) and Pic0(E/k)) making E into a group variety.
Since E has genus 1 there is, up to scaling, a unique regular di�erential on E. It is

given by

ω =
dx

2y + a1x+ a3

.

It is invariant under the group law in the sense that for any P ∈ E(k̄), pull back along
translation by P leaves ω invariant.

1.2. Elliptic curves over C. Let Λ ⊆ C be a lattice. For an integer k ≥ 2 we de�ne

G2k(Λ) =
∑

06=w∈Λ

1

w2k

which is absolutely convergent. We also de�ne

g2(Λ) = 60G4(Λ) and g3(Λ) = 140G6(Λ).

Let
E : y2 = x3 + Ax+B

1
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be an elliptic curve over C. Then there is a unique lattice Λ ⊆ C with g2(Λ) = −4A
and g3(Λ) = −4B. The map

ψ : C/Λ→ E(C)

given by

z 7→
(
℘(z; Λ),

1

2
℘′(z; Λ)

)
is an isomorphism of complex Lie groups, where ℘(z; Λ) is the Weierstrass ℘-function
and ℘′(z; Λ) its derivative. Moreover, we have dz = ψ∗(dx

2y
).

Setting ω = dx
2y

we may recover Λ as

Λ =

{∫
γ

ω | γ ∈ H1(E,Z)

}
.

We refer to this as the period lattice of E (which, of course, depends on our choice of
ω).
The inverse of ψ is the map

P 7→
∫ P

O

ω

where we note that this integral is well de�ned (i.e. path independent) modulo Λ.
For a �xed global 1-form ω on E(C) the complex period is de�ned as

Pω =
1

2

∫
E(C)

| ω ∧ ω̄ | .

If we take ω = dx
2y

then we have

Pω =
1

2

∫
C/Λ
| dz ∧ d̄z |=

∫
C/Λ

dxdy

is just the area of the fundamental parallellogram of Λ.

1.3. Elliptic curves over the reals. Let E be an elliptic curve over the reals with
Weierstrass equation E : y2 = x3 +Ax+B for A,B ∈ R so that E(R) is a 1-dimensional
real manifold. Let Λ be the associated period lattice. One sees easily that Λ is stable
under the action of complex conjugation, and that the isomorphism ψ : C/Λ ∼→ E(C)
commutes with complex conjugation and de�nes an isomorphism of real Lie groups
between E(R) and the Gal(C/R)-invariants of C/Λ. Now complex conjugation σ acts
on Λ as a matrix of order 2 in GL2(Z). Since Λ is a lattice it cannot be contained in R
or iR, thus σ cannot be ±1. Thus σ has eigenvalues 1 and −1 and one sees easily that
we may �nd a basis ω1, ω2 for Λ on which σ acts as one of the matrices(

1 0
0 −1

)
or

(
0 1
1 0

)
.

In the �rst case, we see that Λ is generated by a positive real number wre and a
purely imaginary number wim. Then E(R) (inside C/Λ) consists of the horizontal lines
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Im(z) = 0 and Im(z) = wim

2
. Thus E(R) has 2-connected components and∫

E(R)

| dx
2y
|= 2wre.

Moreover, in this case we have E(R)[2] ∼= (Z/2Z)2. In particular, this occurs if and
only if the discriminant of E is positive.
In the second case, we see that Λ is generated by a non-real number w and its complex

conjugate w̄. Then E(R) is just the real axis and
∫
E(R |

dx
2y
|= w + w̄. In this case we

have E(R)[2] ∼= Z/2Z. This occurs if and only if the discriminant of E is negative.
In each case, we have ∫

E(R)

| dx
2y
|= [E(R) : E0(R)]Ω+

where Ω+ is the unique positive generator of Λ ∩ R ∼= Z, the so-called real period (we
caution again that this depends on the choice of di�erential/Weierstrass equation).

1.4. Elliptic curves over local �elds. Let K be a non-archimedean local �eld, nor-
malised valuation v, ring of integers OK , uniformiser πK , residue �eld k of order q. Let
E/K an elliptic curve. A Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

for E is integral if v(ai) ≥ 0 for all i (i.e. if each ai is integral). Such an equation is
minimal if it is integral and among all such integral models, v(∆) is minimal. Note
that if the equation is integral and v(∆) < 12 then it is automatically minimal. We
write ∆min for the minimal discriminant of E/K, which is well de�ned up to units.

De�nition 1.2. We de�ne the reduction of E to be the (possibly singular) curve Ẽ/k
obtained by reducing modulo πK the coe�cients of a minimal equation for E. One sees
easily that this is independent of the choice of minimal equation (up to isomorphism
over k). Moreover, the minimal di�erential

ωo =
dx

2y + a1x+ a3

relative to a minimal Weierstrass equation is well de�ned modulo units in OK .

If v(∆) = 0 for a minimal Weierstrass equation then E is an elliptic curve over k (and
conversely). Either way, one can check that the usual chord tangent process makes the
set Ẽns(k) of non-singular k-points on Ẽ into a group.
We have the following possibilities:

• Ẽ/k is an elliptic curve (⇔ v(∆min) = 0),
• Ẽ/k is a genus 0 curve with a node. In this case we say E/K has multiplicative
reduction. We further say that E/K has split (resp. non-split) multiplicative
reduction if the node is split (resp. non-split). We have

Ẽns(k) ∼=

{
k× split mult.

k(
√
u)×Norm=1 non-split mult.
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where here u ∈ k× \ k×2. Note that Ẽns(k) has order q − 1 in the �rst instance,
and q + 1 in the second,
• Ẽ/k is a genus 0 curve with a cusp. In this case we say that E/K has additive
reduction. We have

Ẽns(k) ∼= k

which has order q.

We have a natural reduction map E(K) → Ẽ(k) de�ned as follows. Given P = [x :
y : z] on E(K), we scale the coordinates of P so that all of x, y, z are integral, and
at least one is a unit. We then de�ne P̄ = [x̄ : ȳ : z̄] ∈ Ẽ(k), noting that this is well
de�ned. One checks that this restricts to a homomorphism E0(K) → Ẽns(k) (where
by de�nition E0(K) is the preimage of Ẽns(k) under reduction, and is a subgroup of
E(K)). We have a short exact sequence

0→ E1(K)→ E0(K)→ Ẽns(k)→ 0,

with E1(K) being de�ned by the sequence, and surjectivity on the right following from
Hensel's lemma.
The quotient E(K)/E0(K) is a �nite abelian group (by a compactness argument

using the v-adic topology on E(K)) and we de�ne the Tamagawa number

c(E/K) = |E(K)/E0(K)|.
Note that this is 1 if E has good reduction. If E/K has split multiplicative reduction

then we have E(K)/E0(K) ∼= Z/v(∆min)Z. In general, the Tamagawa number (and
indeed the full structure of E(K)/E0(K)) may be computed using Tate's algorithm.

1.5. The formal group of E/K. We wish to study the group E1(K) of points on a
minimal Weierstrass equation reducing to the point at in�nity on Ẽ.
We �rst make a change of variables so we can see the point at in�nity in an a�ne

chart. Speci�cally, write z = −x
y
and w = − 1

y
(i.e. apply the transformation [x : y :

z] 7→ [−x : −z : y] of P2 which sends [0 : 1 : 0] to [0 : 0 : 1] and look at the a�ne chart
where the right most co-ardinate is equal to 1). We obtain the a�ne equation

w = z3 + a1zw + a2z
2w + a3w

2 + a4zw
2 + a6w

3

and at (0, 0) the function z is a uniformiser. Then in the completed local ring at (0, 0)
we can write w as a power series in z (by successively substituting for w into the right
hand side of the above equation).
We obtain

w(z) = z3 + a1z
4 + (a2

1 + a2)z5 + (a3
1 + 2a1a2 + a3)z6 + ... ∈ Z[a1, ..., a6][[z]].

We can then express the coordinate functions x and y as Laurent power series in z
and obtain

x(z) =
1

z2
− a1

z
− a2 − a3z − (a4 + a1a3)z2 − ...

and

y(z) = − 1

z3
+
a1

z2
+
a2

z
+ a3 + (a4 + a1a3)z − ...
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and the minimal di�erential has equation

ω = (1 + a1z + (a2
1 + a2)z2 + ....)dz.

Now a point P = (x, y) reduces to O if and only if one of x and y are non-integral.
The Weierstrass equation for E shows that this occurs if and only if both x and y are
non-integral, in which case z = −x

y
∈ πKOK . Now given z ∈ πKOK , the power series

for x(z) and y(z) converge to elements in K which by construction lie in E1(K). This
in fact gives us a bijection

πKOK → E1(K).

Moreover, we can use the group law on E(K) to �nd a power series F(z1, z2) ∈
Z[a1, ..., a6][[z1, z2]] giving the group law on πKOK via this bijection. We have

F(z1, z2) = z1 + z2 + (2− a1)z1z2 − a2(z2
1z2 + z1z

2
2) + ...

This gives an example of a formal group. Now the group law on πKOK is determined
by the power series F and since this starts z1 + z2 + ..., one sees that multiplication by
n on πKOK is given by a power series whose leading term is nz. Using this, one proves
the following important fact:

Lemma 1.3. Multiplication by n is an isomorphism on E1(K) for all n coprime to the
residue characteristic of K.

Corollary 1.4. If E/K has good reduction, then reduction gives an isomorphism

E(K)[n] ∼= Ẽ(k)[n]

for all n coprime to the residue characteristic of K.

1.6. Periods at non-archimedean places. Let ωo be the minimal di�erential on
E/K. Let | · | denote the absolute value on K normalised so that |πK | = 1

q
.

Lemma 1.5. We have ∫
E(K)

|ωo| = c(E/K)|Ẽns(k)|
q

.

Sketch of proof. We �rst indicate what the left hand side means. The group E(K)
naturally has the structure of a K-analytic manifold of dimension 1. Let U be an open
subset of E(K) and ψ : U

∼→ V ⊆ open K be a chart. Then the di�erential ωo takes the
form f(z)dz on V where dz is the usual di�erential on K and f(z) is a Laurent power
series in z without poles in V . We then de�ne∫

U

|ωo| =
∫
V

|f(z)|dµ

where µ is the Haar measure on K normalised so that OK has volume 1. We de�ne the
integral over E(K) by glueing.
We now appply this to E/K. The subgroup E1(K) is open in E(K) and (the inverse

of) the map

z 7→ (x(z), y(z))
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coming from the formal group gives a chart

E1(K)
∼−→ πKOK ⊆ K

(though this is an isomorphism of groups only when we endow πKOK with the formal
group law coming from E). Under this, the di�erential ωo corresponds to

(1 + a1z + (a2
1 + a2)z2 + ....)dz.

Now 1 + a1z + .... has absolute value 1 everywhere on πOK so that∫
E1(K)

|ωo| =
∫
πKOK

dµ =
1

q
.

Now since the di�erential ωo is invariant, the resulting measure on E(K) is a Haar
measure, so that∫

E(K)

|ωo| = [E(K) : E1(K)]

∫
E1(K)

|ωo| = c(E/K)
|Ẽns(k)|

q

as desired. �

Note that if ω is any di�erential on E then ω = λωo and we have∫
E(K)

|ω| = |λ|c(E/K)
|Ẽns(k)|

q
= | ω

ωo
|c(E/K)

|Ẽns(k)|
q

the last equality by de�nition.

1.7. Elliptic curves over global �elds.

1.7.1. Mordell�Weil theorem and heights.

Theorem 1.6 (Mordell�Weil theorem). Let K be a global �eld and E/K an elliptic
curve. Then the group E(K) is �nitely generated.

The Mordell�Weil theorem says that E(K) ∼= E(K)tors ⊕ Zr for some integer r ≥ 0,
where E(K)tors is the (necessarily �nite) torsion subgroup of E(K). By de�nition, r is
the rank of E/K, denoted rk(E/K). The question of how to determine the rank of a
given elliptic curve will be discussed in more detail in Stoll's course.
There are two main ingredients in the proof of the Mordell�Weil theorem.

Step 1 (Weak Mordell�Weil theorem): The group E(k)/nE(k) is �nite for some
n ≥ 2.

Step 2: Theory of heights.

The �rst step uses the theory of Selmer groups.
The precise input for the second step is the following:
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Theorem 1.7. Let K be a global �eld and E/K an elliptic curve. Then there is a
symmetric bilinear pairing, the canonical height pairing

〈 , 〉 : E(K)× E(K)→ R
such that

(i) 〈x, x〉 ≥ 0 ∀x ∈ E(K) with equality if and only if x ∈ E(K)tors,

(iii) for each M ≥ 0, the set

{P ∈ E(K) : 〈P, P 〉 ≤M}
is �nite.

Proof. (Sketch) Let MK denote the set of places of K. We de�ne for P = [x0 : ... :
xn] ∈ Pn(K),

h(P ) =
∑
v∈MK

log (max{|x0|v, ..., log|xn|v}) .

Now for an elliptic curve E/K, given by a Weierstrass equation, consider the x-
coordinate map x : E → P1. We de�ne the naive height of a point P ∈ E(K) as
h0(P ) = h(x(P )), where h(x(P )) is de�ned using the above height function on P1.
Note that this is (at least up to a constant which vanishes in the forthcoming limiting
process) intrinsic to E since {1, x} is a basis for H0(E, 2O).
We then de�ne the canonical height of P ∈ E(K) as

h(P ) = limn→∞
1

4n
h0(2nP ).

Then one shows that this is a quadratic form on E(K) and that the associated bilinear
pairing has the required properties. �

Exercise: Use the above theorem and �niteness of E(K)/2E(K) to prove the
Mordell�Weil theorem.

De�nition 1.8. Let K be a global �eld and E/K an elliptic curve. The regulator of
E/K is de�ned as the absolute value of the determinant of the height pairing:

Reg(E/K) = |det (〈Pi, Pj〉)i,j|
where {Pi} is any Z-basis for E(K)/E(K)tors.

1.7.2. Computing the torsion subgroup. Here we give an example of how the torsion
subgroup of an elliptic curve may be computed in practice.
Consider the elliptic curve E : y2 = x3 − 19x+ 30 over Q. Its discriminant is 210 · 72

hence it has good reduction over Qp for p 6= 2, 7 and this equation is minimal at such
primes. So for any odd prime p 6= 7, and n coprime to p, we have

E(Q)[n] ↪→ E(Qp)[n] ∼= Ẽ(Fp)[n].

Taking p = 3 we have

Ẽ(F3) = {∞, (0, 0), (1, 0), (−1, 0)}
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has order 4.
Taking p = 5 gives

Ẽ(F5) = {∞, (0, 0), (2, 0), (−2, 0)}
has order 4.
Combining the two statements above we see that E(Q)tors has order dividing 4, and

since the points
{∞, (2, 0), (3, 0), (−5, 0)}

are in E(Q) and generate a subgroup isomorphic to (Z/2Z)2 they consist of all the
torsion points.
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2. Lecture 2: Zeta functions, L-functions and BSD

2.1. Zeta functions of schemes over �nite �elds. Let X/Fq be a scheme of �nite
type. We de�ne

Z(X/Fq, T ) = exp

(∑
n≥1

|X(Fqn)|T
n

n

)
.

The Zeta-function of X/Fq is then the complex function de�ned by

ζ(X, s) = Z(X/Fq, q−s).

One may check that this converges for re(s) > dim(X).
Examples.

• Take X = A1
Fq

so that |X(Fqn)| = qn. Then we have

Z(X,T ) = exp

(∑
n≥1

(qT )n

n

)
= exp (−log(1− qT ))

=
1

1− qT
.

• TakeX = pt = SpecFq. Then we have |X(Fqn)| = 1 for all n. Then (analagously
to the previous computation) we obtain

Z(X,T ) =
1

1− T
.

• Take X = pt of degree r = SpecFqr . Then we have

|X(Fqr)| =

{
0 r - n
r r | n.

Then one has

Z(X/Fq, T ) = exp

(∑
n≥1

r
T nr

nr

)

=
1

1− T r
.

Note that if X is (in a suitable sense) a disjoint union of schemes W and V then we
have

Z(X,T ) = Z(W,T )Z(V, T ).

In particular, one can use the previous examples to deduce that

Z(P1
Fq
, T ) =

1

(1− T )(1− qT )
.
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In fact, although this is not totally obvious, one can also do this for countably in�nite
unions, so that in particular, one obtains, for any X/Fq, the following Euler product
expression

Z(X,T ) =
∏

x closed pt of X

Z(x, T )

=
∏

x closed pt of X

(
1

1− T degx

)
.

2.2. Weil conjectures.

Theorem 2.1 (Weil conjectures). Let X/Fq be a smooth projective variety of dimension
n. Then

Z(X,T ) =
P1(T )P3(T )...P2n−1(T )

P0(T )P2(T )...P2n(T )

where the Pi(T ) ∈ Z[T ] are polynomials in T with P0(T ) = 1 − T , P2n(T ) = 1 − qnT
and for each 1 ≤ i ≤ 2n,

Pi(T ) =
∏
j

(1− αijT )

for some algebraic integers αij having absolute value qi/2 for each complex embedding
(this last statement is referred to as the Riemann hypothesis).
Moreover, Z(X,T ) satis�es the functional equation

Z

(
X,

1

qnT

)
= ±qnχ/2T χZ(X,T )

where χ ∈ Z is the Euler characteristic of X.

In fact, we have

Pi(T ) = det
(
1− Frob−1

q T | H i
et(X,Ql)

)
for any prime l - q (here Frobq ∈ Gal(F̄q/Fq) is the arithmetic Frobenius, which acts on
F̄q as x 7→ xq).
Example. Let E/Fq be an elliptic curve. Then

Z(X,T ) =
P1(T )

(1− T )(1− qT )

where P1(T ) = det
(
1− Frob−1

q T | Vl(E)∨
)
. Since Vl(E) is a 2-dimensional Ql-vector

space, P1(T ) has degree 2, constant term 1 and leading coe�cient q. The only possibility
is that

Z(X,T ) =
1− aT + qT 2

(1− T )(1− qT )

where a = q + 1− |E(Fq)|.
It follows from the Riemann hypothesis that we have the Hasse bound

|a| ≤ 2
√
q.

(Though this is very much overkill, there exists an elementary proof of this.)
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2.3. The L-function of an elliptic curve. Let K be a global �eld and E/K an
elliptic curve. For each place v of K, let Ẽ/kv be the reduced curve over the residue
�eld. If E has good reduction at v, we de�ne

Lv(E, T ) = 1− avT + qvT
2

where av = qv + 1− |Ẽ(kv)|.
For the places of bad reduction of E, we de�ne

Lv(E, T ) =


1− T E split mult at v

1 + T E non-split mult at v

1 E additive at v.

De�nition 2.2. The L-function of E/K is de�ned as (the complex function)

L(E/K, s) =
∏

v non-arch

Lv(E, q
−s
v )−1.

The Hasse bound ensures that this converges absolutely for Re(s) > 3/2.

Remark 2.3. From the example earlier, for places of good reduction we have

Lv(E, T ) = Z(Ẽ/kv, T )(1− T )(1− qvT ).

In fact, one checks easily that this formula holds for places of bad reduction too. One
de�nes the global zeta function of E/K as

ζ(E/K, s) =
∏

v non-arch

Z(Ẽ/kv, q
−s
v ).

By the above remark, we have

ζ(E/K, s) = ζK(s)ζK(s− 1)L(E/K, s)−1,

where here ζK(s) is the Dedekind�Zeta function of K. For K = k(C) the function �eld
of a smooth projective curve over a �nite �eld k, we have

ζK(s) = ζ(C/k, s).

Remark 2.4. Note that at all places we have the important equality

Lv(E, q
−1
v ) =

|Ẽns(kv)|
qv

.

2.4. The completed L-function. We now add in factors at archimedean places (in
the number �eld case) and additional factors to simply the functional equation, to
obtain the completed L-function.

2.4.1. Number �elds. Let K be a number �eld and E/K and elliptic curve. Then the
completed L-function is

Λ(E/K, s) = (Norm(N(E/K))d2
K)s/2

(
(2π)−sΓ(s)

)[K:Q]
L(E/K, s)

where N(E/K) is the conductor of E/K and dK is the discriminant of K.
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2.4.2. Function �elds. Let K be a function �eld of genus g with �eld of constants Fq
and E/K and elliptic curve. Then

Λ(E/K, s) = q
s
2

(degN(E/K)+4g−4)L(E/K, s).

Conjecture 1 (Hasse�Weil conjecture). Let K be a global �eld and E/K an elliptic
curve. Then the completed L-function Λ(E/K, s) has a meromorphic continuation to
the whole complex plane and satis�es the functional equation

Λ(E/K, s) = w(E/K)Λ(E/K, 2− s)
where w(E/K) ∈ {±1} is the global root number of E/K. Unless K is a function
�eld and E/K a constant elliptic curve (i.e. has some Weierstrass equation with all
coe�cients in the �eld of constants), then Λ(E/K, s) in fact has analytic continuation
to the whole of C.

This is known for all elliptic curves over K if either K is a function �eld, K = Q or
K is a real quadratic �eld. Partial information is known over CM �elds (see Thorne's
course). The other main example is when E/K has (potential) complex multiplication,
when again the conjecture is known to be true.

2.4.3. Root numbers. For a local �eld K and an elliptic curve E/K, one may de�ne its
local root number w(E/K) ∈ {±1}. We shall not go into the details of this de�nition
but we note that one has

w(E/K) =

{
1 E has good or non-split multiplicative reduction

−1 E has split multiplicative reduction or K is archimedean

with the case of additive reduction being more complicated but still computable in
practice.
One then conjectures that when E is an elliptic curve over a global �eld K, denoting

by MK the set of places of K, that

w(E/K) =
∏
v∈MK

w(E/Kv).

This is known (??) in all the cases described above where the Hasse�Weil conjecture
is known.
In particular, one expects the sign in the functional equation to be readily computable

from local data.

2.5. Statement of the Birch�Swinnerton-Dyer conjecture. For this section, we
refer to the Bourbaki article of Tate [Tat95] for more details.

Conjecture 2 (Birch and Swinnerton-Dyer conjecture part I). Let K be a global �eld
and E/K an elliptic curve. Then we have

ords=1L(E/K, s) = rk(E/K).

Remark 2.5. Note that the order of vanishing of L(E/K, s) agrees with the order of
vanishing of the completed L-function Λ(E/K, s).
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Conjecture 3 (Birch and Swinnerton-Dyer conjecture part II). The leading term of
the Taylor series of L(E/K, s) at s = 1 is given by

1

r!
L(r)(E/K, s) |s=1=

Reg(E/K)

|E(K)tors|2
|X(E/K)|

∏
v|∞

∫
E(Kv)

|ω|v ·
∏
v-∞

c(E/Kv)

∣∣∣∣ ωωov
∣∣∣∣
v

·

{
2r2√
dK

K number �eld
1

qg−1 K function �eld

(here r is the order of vanishing at s = 1 and r2 is the number of complex places of K).
In what follows, we will refer to the right hand side of this formula as BSD(E/K).

For complex places v, one may, if one wishes, take as a de�nition∫
E(Kv)

|ω|v =
1

2

∫
E(Kv)

|ω ∧ ω̄|.

2.6. Conceptualising BSD(E/K). Here we aim to explain somewhat the terms that
appear in part II of the Birch and Swinnerton�Dyer conjecture.
Let K be a �xed global �eld and E/K an elliptic curve. Fix a non-zero global

di�erential ω. Combining Lemma 1.5 with Remark 2.4 gives, for each non-archimedean
place v,

(2.6)

∫
E(Kv)

|ω|v = c(E/Kv)

∣∣∣∣ ωωov
∣∣∣∣
v

Lv(E, q
−1
v ).

We'd like to say that the integral of |ω| over the Adelic points of E is simply equal
to the product over all places of the left hand side of the above equation. However,
this does not converge since the Euler product for the L-function does not converge for
s = 1. More speci�cally, for each place, let µv denote the measure on E(Kv) induced
by ω. We'd like to de�ne a measure on the Adelic points of E by taking the product
of these local measures. However, we again run into the problem that the L-function
does not converge at s = 1 when trying to do this. To salvage matters, we add in
`convergence factors'. That is, we take Haar measures

µ′v =
1

Lv(E, q−1
v )

µv

at all non-archimedean places. Then
∏

v µ
′
v(E(Kv)) now does converge and we obtain

a measure µ on E(AK). This does not depend on the choice of di�erential due to the
product formula and we have

µ′v(E(AK)) =
∏
v|∞

∫
E(Kv)

|ω|v ·
∏
v-∞

c(E/Kv)

∣∣∣∣ ωωov
∣∣∣∣
v

.

In fact, there is still a choice involved in this measure - we de�ned the local Haar
measures with respect to a choice of additive Haar measure ν on Kv and speci�ed their
normalisations (this is not ideal since these normalisations behave badly under �eld
extensions for example). It's more natural to start with an arbitrary Haar measure on
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AK and then use the induced Haar measures at each completion (which are well de�ned
locally only up to scaling vanishing globally). If we divide the resulting Haar measure
on E(AK) by the value ν(AK/K) then we wind up eliminating the choice of ν. The
resulting measure µ′ on E(AK) (the Tamagawa measure) satis�es

µ′(E(AK)) =
∏
v|∞

∫
E(Kv)

|ω|v ·
∏
v-∞

c(E/Kv)

∣∣∣∣ ωωov
∣∣∣∣
v

·

{
2r2√
dK

K number �eld
1

qg−1 K function �eld.

Thus it makes sense to write

BSD(E/K) =
Reg(E/K)

|E(K)tors|2
|X(E/K)|vol(E(AK)).

In fact, given the presence of the L-function in the convergence factors, it is also
natural to try and `remove them' and de�ne

Vol(E(AK)) =
µ′v(E(AK))

1
r!
L(r)(E/K, s)

instead (here we use the capital `V' to distinguish from our previous de�nition of the
volume). Then the second part of the Birch and Swinnerton�Dyer conjecture simply
becomes

Reg(E/K)

|E(K)tors|2
Vol(E(AK)) =

1

|X(E/K)|
which is reminiscent of a formula for the Tamagawa number of an algebraic torus.
This idea was pushed further by Bloch [Blo80] and lead eventually to the Bloch�Kato
conjecture [BK90], a vast generalisation of BSD (which also realises both BSD and the
analytic class number formula as instances of the same conjecture).

2.7. Known results. (By no means intended to be comprehensive.)

Theorem 2.7 (Gross�Zagier [GZ86], Kolyvagin [Kol88]). Let E/Q be an elliptic curve
with

ords=1L(E/Q, s) ≤ 1.

Then

rk(E/Q) = ords=1L(E/Q, s).
Moreover, X(E/Q) is �nite.

Remark 2.8. There is a generalisation of this result for modular elliptic curves over
totally real �elds due to Shouwu Zhang [Zha01]. The implication rkan = 0 ⇒ rk = 0
for CM curves over Q was earlier proven by Coates and Wiles [CW77].

Under certain additional assumptions we have a partial converse to the above theorem
due to Skinner, Urban and Wei Zhang in various combinations (see [SU14], [Zha14b]
and the survey paper [Zha14a]). We do not attempt to state precisely the conditions
on E/Q for it to hold, but the conclusion is of the form

Selp(E/Q) ∼= (Z/pZ)r for r ∈ {0, 1}
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for p odd implies that
ords=1L(E/Q, s) = r.

Over a general number �eld the main result is the following (due to Cassels in this
setting and generalised by Tate and Milne).

Theorem 2.9 ([Cas65], [Tat95], [Mil06, Theorem 7.3 and Remark 7.4]). Let K be a
global �eld and E/K an elliptic curve. Let E ′/K be isogeneous to E (over K). Then
X(E/K) is �nite if and only if X(E ′/K) is �nite. Moreover, if this is the case then

BSD(E/K) = BSD(E ′/K).

Over function �elds, much more is known and we will discuss this next lecture.

2.8. The parity conjecture. Assuming analytic continuation and functional equation
of the L-function and considering the Taylor series about s = 1, one sees that

w(E/K) = (−1)ords=1L(E/K,s).

In particular, a consequence of the Birch and Swinnerton-Dyer conjecture is the parity
conjecture.

Conjecture 4 (Parity conjecture). Let K be a global �eld and E/K an elliptic curve.
Then

w(E/K) = (−1)rk(E/K).

This is actually quite remarkable as it often gives a very simple way to predict that
an elliptic curve has a rational point of in�nite order.

Example 2.10. Let E/Q be the elliptic curve

E : y2 + y = x3 + x2 − 10x+ 10

which has Cremona label 123a1. The discriminant is −41 ·35 and one easily checks that
it has split multiplicative reduction at 3 and 41. Along with the real place, this gives

w(E/Q) = (−1)3 = −1

and hence the parity conjecture predicts that rk(E/Q) is odd, and hence positive. In
fact, P = (−4, 1) is a Mordell�Weil generator.

Remark 2.11. This sort of argument solves the congruent number problem for many
values of n, conditional on the parity conjecture.

Theorem 2.12 ([DD11, Theorem 1.2]). Let K be a number �eld and E/K and elliptic
curve. If X(E/F ) is �nite for F = K(E[2]), then

w(E/K) = (−1)rk(E/K).
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3. BSD over function fields

Here we analyse the Birch and Swinnerton-Dyer conjecture over function �elds. Re-
call that for an elliptic curve E over a function �eld K, the L-function of E/K is
known to have a meromorphic continuation to the whole of C and poles only when E
is a constant elliptic curve. We have the following theorem.

Theorem 3.1 (Tate�Artin [Tat95], Milne [Mil75]). Let K be a function �eld and E/K
an elliptic curve. Then

rkE(K) ≤ ords=1L(E, s).

Moreover, we have equality if and only if X(E/K)[l∞] is �nite for any prime number
l.
If this is the case, then the second part of the Birch and Swinnerton-Dyer conjecture

also holds.

In this lecture we will sketch how to obtain meromorphic continuation of the L-
function and the rank inequality from the Weil conjectures.

3.1. Elliptic curves and elliptic surfaces. Let k be a �nite �eld and C/k a smooth
projective, geometrically connected curve. Let K = k(C).
Fix an elliptic curve E/K. For simplicity, we assume that E/K is not isotrivial (i.e.

its j-invariant is non-constant).

Proposition 3.2. There is a smooth, projective, geometrically irreducible surface E/k
equipped with a surjective morphsim π : E → C having generic �bre E. If we moreover
assume that π is relatively minimal, then the pair (E , π) is unique.

We do not prove this but illustrate the idea with the following example.

Example 3.3. Consider, for example, the elliptic curve

E : y2 = x(x− t2)(x− 1) / F5(t).

Now the discriminant of the elliptic curve y2 = x(x− t2)(x−1) is 16t4(t−1)2(t+ 1)2 so
that the elliptic curve has good reduction away from t = 0,±1,∞. At t = 0,±1 we have
split multiplicative reduction and to check the reduction at t =∞, let x = t2x′, y = t3y′

and write u = 1/t, giving equation

y′2 = x′(x′ − 1)(x′ − u2).

This equation is minimal at u = 0 and we see that we have split multiplicative reduction
at t =∞ also.
Now consider the surface over F5

E0 = {y2z − x(x− t2z)(x− z) = 0} ⊆ P2 × A1

where x, y, z are variables on P2 and t is the variable on A1. We have a map π0 : E0 → A1

given by ([x : y : z], t) 7→ t. The �bre over any closed point x of A1 is a cubic curve over
the residue �eld F5(x). Thus we think of E0 as being a surface �bred in elliptic curves
(save that at t = 0,±1 the �bre is a nodal cubic curve).
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Consider similarly the surface

E1 = {y′2z′ − x′(x′ − u2z′)(x′ − z′) = 0} ⊆ P2 × A1.

Again we have a natural map π1 to A1 given by projecting onto the u coordinate.
The surfaces E0 and E1 glue along the change of variables x = t2x′, y = t3y′, u =

1/t, z = z′ to give a surface E2 which is now projective, and the maps π0 and π1 glue
to give a morphism π2 : E2 → P1 which is surjective. Finally, we blow up (possibly
multiple times) at the singular points of the surface, namely at ([x : y : z], t) ∈ {([0 :
0 : 1], 0), ([1 : 0 : 1],±1)} and ([x′ : y′ : z′], u) = ([0 : 0 : 1], 0) to resolve the singularities
and obtain a smooth projective surface E admitting a surjective morphism π : E → P1.
Note that the map t 7→ ([0 : 1 : 0], t) de�nes a section σ to π.
Moreover, the generic �bre of E → P1 is simply our original elliptic curve E. In

particular, the inclusion k(P1) ↪→ k(E) induced by π realises an isomorphism of k(E)
and k(E) over k(P1).

We now return to the general setting. As in the example above, the point O on E(K)
gives a section σ to π, whose image in E is isomorphic to C. We also refer to this curve
as O.

3.2. The L-function of an elliptic curve over a function �eld. Let E/K be an
elliptic curve over a function �eld K = k(C) (constant �eld k = Fq). Recall that we
have de�ned, for each place v of K, a polynomial

Lv(E, T )

such that the L-function of E/K is given by

L(E/K, s) =
∏
v∈MK

Lv(E, q
−s
v )−1

where qv is the order of the residue �eld at v. Note that (unlike the number �eld case)
we have qv = qdegv. It thus makes sense to de�ne the formal power series

L(E/K, T ) =
∏
v∈MK

Lv(E, T
degv)−1 ∈ Q[[T ]]

so that L(E/K, s) is obtained from L(E/K, T ) by setting T = q−s.
Recall that for each place v, we have

Lv(E, T ) = Z(Ẽ/kv, T )(1− T )(1− qvT ).

Now let E/k be the associated elliptic surface. We have

Z(E , T ) =
∏

x closed pt of C

Z(Ex/Fq, T )

=
∏

x closed pt of C

Z
(
Ex/k(x), T deg(x)

)
.
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We observe that for a closed point x of C at which E has good reduction, we have

Z
(
Ex/k(x), T deg(x)

)
=

Lx(E, T
degx)

(1− T degx)(1− qvT degx)
=

Lx(E, T
degx)

(1− T degx)(1− (qT )degx)
.

Taking the product over all places gives

L(E/K, T ) =
Z(C, T )Z(C, qT )

Z(E , T )

∏
v bad

Qv(T )

where each Qv(T ) is a rational function in T which may be determined by comparing
the Zeta functions of the bad �bres of E with the corresponding local L-polynomials.
It now follows from the Weil conjectures that:

Theorem 3.4. Let E be an elliptic curve over a function �eld K. Then L(E/K, T ) is
a rational function of T . In particular, L(E/K, s) has a meromorphic continuation to
the whole of C.

A careful case by case analysis of the Qv(T ) above also proves:

Proposition 3.5. Let K be a global function �eld and E/K an elliptic curve with
associated elliptic surface E. Then

ords=1L(E/K, s) = −ords=1ζ(E , s)− 2−
∑
v bad

(mv − 1)

where mv is the number of irreducible components in the �bre of E at v.

Remark 3.6. Grothendieck's work [Gro95] on L-functions over function �elds gives a
much more re�ned analysis of the L-function which allows us to prove analytic contin-
uation in the case where E is non-constant (and more besides).

3.3. The Shioda�Tate formula. In this section we relate rational points on E/K to
divisors on the surface E .
Let Γ be a prime divisor on E (=irred curve in E). Consider the restriction π|Γ : Γ→

C. There are two possibilities:

• π(Γ) = {pt}: in this case we say that Γ is a vertical curve.
• π(Γ) = C: in this case we say that Γ is a horizontal curve. Associated to Γ
is a valuation µΓ on k(E) = k(E). The assumption that Γ is horizontal means
that µΓ is trivial on k(C). In particular, µΓ corresponds to a closed point PΓ

on E. The residue �eld at this point is simply the function �eld of Γ, so that
degPΓ = [k(Γ) : k(C)] is the degree of the morphism π|Γ.

The above discussion allows us to de�ne a homomorphism

α : Div(E) −→ Div0(E)

given by setting, for a prime divisor Γ,

α(Γ) =

{
(PΓ)− [k(Γ) : k(C)](O) Γ horizontal

0 Γ vertical,

and extending linearly.
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Theorem 3.7 (Shioda�Tate). The map α induces a short exact sequence

0→ ZO ⊕ ZF ⊕
⊕
Γ∈S

ZΓ −→ NS(Ek̄) −→ Pic0(Ek̄) = E(k̄K)→ 0

where here

• NS(Ek̄) = Pic(Ek̄)/Pic0(Ek̄) (=`divisors modulo algebraic equivalence') is the
Néron�Severi group of Ek̄,

• F is any �bre (= π∗(closed pt on Ck̄))

• S is the set of vertical prime divisors not meeting O.

In particular, taking Gal(k̄/k)-invariants, we deduce the Shioda�Tate formula

rkNS(E) = rkE(K) + 2 +
∑
v bad

mv − 1,

where for each place v of bad reduction for E, mv denotes the number of irreducible
components in the �bre over v, and the Néron�Severi group of E is de�ned as the image
of Div(E) in NS(Ek̄) (using that k is �nite one sees that this agrees with NS(Ek̄)Gal(k̄/k)).

N.B. any two �bres are algebraically equivalent.

Sketch of proof. We work the whole time over k̄ and to ease notation we drop the
subscripts.
The argument relies on the existence of the intersection pairing

Div(E)×Div(E)→ Z

which descends to the Néron�Severi group. Roughly speaking, the intersection of two
curves on E is, not too suprisingly, the number of points in which they intersect, counted
with multiplicity (when the curves are distinct). One then shows that this is invariant
under linear equivalence where this makes sense. The pairing in general may now be
de�ned by moving the curves via linear equivalence until one can de�ne their intersection
in the previous way. We say that two divisors are numerically equivalent if they cannot
be distinguished via the intersection pairing.
α descends to the Néron�Severi group: First note that it clearly descends to

Pic(E), for if D = divE(f) then the image under α is divE(f). The general argument is
fairly involved and we omit the full details. The map π : E → C induces a homomor-
phism π∗ : Pic0(C) → Pic0(E) and clearly we're done if we show it's an isomorphism.
More geometrically we can view π∗ as a homomorphsim of abelian varieties between
Pic0

C/k and Pic0
E/k. The presence of the section σ : C → E ensures that π∗ is injective so

we must show it is surjective. Since the map is injective it su�ces to show that π∗ is an
isogeny of abelian varieties, i.e. we may check surjectivity up to a �nite index subgroup.
There is now a nice geometric argument due to Shioda [Shi90, Theorem 4.1], starting
from the above observation, which relies on a careful analysis of the intersection pairing
on E . This is where we need to know that E is non-isotrivial.
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Surjectivity on the right: Any divisor D ∈ Pic0(E) is linearly equivalent to
(P )− r(O) for some P ∈ E a point of degree r. Since this is equal to the image of ¯{P}
under α, the map α : Div(E)→ Pic0(E) is surjective.
Exactness in the middle: It's immediate from the de�nition of α that O, F and

all Γ ∈ S are in the kernel of α. For the converse, suppose that [D] ∈ NS(E) is
such that α(D) = 0 ∈ Pic0(E). Say α(D) = div(f) for f ∈ K(E) = k(E). Then
D − (D · F )O − div(f) is a vertical divisor. In particular, D is algebraically equivalent
to an element of ZO ⊕ ZF ⊕

⊕
Γ∈S ZΓ.

Injectivity on the left: If some element of ZO⊕ZF ⊕
⊕

Γ∈S ZΓ were algebraically
equivalent to zero, then it would be numerically equivalent to zero, but one checks easily
that this is not the case. �

Remark 3.8. We have shown in the course of the proof that numerical equivalence and
algebraic equivalence agree for non-isotrivial minimal elliptic surfaces.

3.4. The Artin�Tate conjecture. If we combine the two sections above, we see that
the BSD rank formula for E is equivalent to the equality

rkNS(E) = −ords=1ζ(E , s).
Since in theory this statement has nothing to do with elliptic curves, one can ask if it
holds for general smooth projective surfaces. This leads to:

Conjecture 5 (Artin�Tate part I). Let k be a �nite �eld and X/k be a smooth projective
surface. Then we have

rkNS(X) = −ords=1ζ(X, s).

(The so called `theorem of the base' ensures that NS(X) is �nitely generated.)

There is also a version of BSD part II for all smooth projective surfaces over �nite
�elds. It can be shown to be equivalent to BSD for all abelian varieties over function
�elds. Stating the precise conjecture is too much of a departure from the course, but we
have the following approximate dictionary between elliptic curves and elliptic surfaces
in general (though one should caution that, like the rank formula, the terms in BSD
and the terms in Artin�Tate do not line up exactly and there is some work to be done
in proving their equivalence):

Elliptic curve E/k(C) Elliptic surface π : E →C over k

L-function of E Zeta function of E
Group of rational points Néron�Severi group

Height pairing Intersection pairing on NS(E)
Shafarevich�Tate group Brauer group of E

3.5. (Extremely brief) sketch of rank inequality. Here we give a very brief sketch
of the rank inequality part of Theorem 3.1. In what follows we write Ē = E ×k k̄.
Fix a prime l 6= p = char(k) and consider the short exact sequence (of sheaves on

Ēet)
0 −→ µln −→ Gm

x 7→xln−→ Gm −→ 0.
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This gives a long exact sequence for etale cohomology from which we extract the
short exact sequence

0 −→ H1(Ē ,Gm)/lnH1(Ē ,Gm) −→ H2(Ē ,µln) −→ H2(Ē ,Gm)[ln] −→ 0.

Now H1(Ē ,Gm) is simply the Picard group of Ē . Moreover, since we are working over
an algebraically closed �eld, Pic0(Ē) is divisible so that

H1(Ē ,Gm)/lnH1(Ē ,Gm) ∼= NS(Ē)/lnNS(Ē)

and by de�nition we have H2(Ē ,Gm) = Br(Ē).
Putting this into the above sequence and taking the inverse limit over n we get an

injection
0 −→ NS(Ē)⊗ Zl −→ H2

et(Ē ,Zl(1)).

Let Frobq denote the Frobenius element x 7→ xq which is a topological generator of
Gal(k̄/k). Then taking Gal(k̄/k)-invariants we deduce an injection

0 −→ NS(E)⊗ Zl −→ H2
et(Ē ,Zl)Frob

−1
q =q

and one can relate the cokernel to the Brauer group of E .
We now recall that the Zeta function of E has the form

Z(E , T ) =
P1(T )P3(T )

P0(T )P2(T )P4(T )

where
Pi(T ) = det

(
1− Frob−1

q T | H i
et(X,Ql)

)
and by the Riemann hypothesis, we see that −ords=1ζ(E , s) is equal to the multiplicity
of q as a root of the characteristic polynomial of (the geometric) Frobenius acting on
H2

et(Ē ,Ql). But the short exact sequence gives

rkNS(E) ≤ dimQl
H2

et(Ē ,Ql)
Frob−1

q =q ≤ −ords=1ζ(E , s)
and we are done.
With more e�ort, one can show that each inequality is an equality if and only if the

Brauer group of E is �nite (equivalently, if and only if the Shafarevich�Tate group of
E/K is �nite).
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4. Lecture 4: The story in higher dimensions

4.1. Abelian varieties. A good reference for the basic theory of abelian varieties (of
which we review a very small amount below) is [Mil86].

De�nition 4.1. Let k be a �eld. An abelian variety over k is a geometrically integral,
projective group variety over k.

Remark 4.2. Usually the de�nition has `proper' in place of `projective' and one shows
that all abelian varieties in this sense possess an ample line bundle and are hence
projective. One sees easily that properness forces the group law to be commutative.

Elliptic curves are one dimensional abelian varieties (and conversely). Our main
source of higher dimensional examples is that of Jacobians. Given a (smooth, projective,
geom connected) curve C/k of genus g, one can associate a g-dimensional abelian variety
J , the Jacobian of C. One has J(k) = Pic0(Cksep)Gal(ksep/k) functorially.
Given an abelian variety A/k, Pic0(A/k̄) has a natural structure of abelian variety

de�ned over k, the dual abelian variety of A, which we denote A∨. For Jacobians, we
have a canonical isomorphism A ∼= A∨ (more precisely we have a canonical principal
polarisation).
Any abelian variety A of dimension d over a �eld k is necessarily smooth and its

sheaf of di�erentials Ω1
A/k is a free OA-module of rank d. In particular, ΛdΩ1(A/K) is

free of rank 1 whence

H0(A,ΛdΩ1(A/K)) ∼= k.

Thus as with elliptic curves, up to scaling there is a unique non-zero regular d-form on
A, which can be shown to be translation invariant.

4.2. Abelian varieties over global �elds. If K is a global �eld then as with elliptic
curves, the group A(K) is �nitely generated, so we may talk about the rank of A/K,
denoted rk(A/K). The proof is more or less the same, using the theory of Selmer groups
and heights (the latter to be discussed shortly).

4.2.1. The L-function. Given an abelian variety A/K, a nonarchimedean place v and
l 6= char(kv), let Tl(E) denote its l-adic Tate module

Tl(E) = lim
←
A[n] ∼= Z2d

l

and let Vl(E) = Tl(E)⊗Zl
Ql, a 2d-dimensional Ql-vector space with action of GKv :=

Gal(Kv
sep/Kv). We de�ne the local L-polynomial

Lv(A, T ) = det
(
1− Frob−1

v T |(Vl(A)∨)Iv
)

where here Iv denotes the inertia group at v, Frobv is the (arithmetic) Frobenius at v,
and Vl(A)∨ is the dual of Vl(A).
It's a general fact (which follows from the Weil conjectures and the existence of the

Néron model) that Lv(A, T ) is a polynomial with integer coe�cients and is independent
of the choice of l.
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One de�nes the L-function of A/K to be

L(A/K, s) =
∏
v

Lv(A, q
−s
v )−1.

Again, this can be shown to converge for Re(s) > 3/2 and conjecturally has mero-
morphic continuation to the whole of C satisfying a functional equation s↔ 2− s.

4.2.2. The Birch and Swinnerton�Dyer conjecture. The Birch and Swinnerton�Dyer
conjecture generalises naturally to all abelian varieties.

Conjecture 6. Let K be a global �eld and A/K an abelian variety of dimension d. Let
0 6= ω ∈ H0(A,ΛgΩ1

A/K). Then

(i) We have the equality

ords=1L(A/K, s) = rk(A/K).

(ii) The leading term of the Taylor series of L(E/K, s) at s = 1 is given by

1

r!
L(r)(A/K, s) |s=1=

Reg(A/K)

|A(K)tors| · |A∨(K)tors|
|X(A/K)|

∏
v|∞

∫
A(Kv)

|ω|v·
∏
v-∞

c(A/Kv)

∣∣∣∣ ωωov
∣∣∣∣
v

·

{
( 2r2√

dK
)d K number �eld

( 1
qg−1 )d K function �eld

(here r is the order of vanishing at s = 1 , r2 is the number of complex places
of K and ω0

v is the Néron di�erential).

The regulator and the non-archimedean factors deserve more explanation.

4.3. The canonical height pairing on an abelian variety. Recall that for each
global �eld K and n ≥ 1 we have a height function

hn,K : Pn(K̄)→ R.
(Earlier we de�ned the height hn,K only on K points - for P ∈ Pn(K ′) for some �nite
extension K ′/K, we de�ne hn,K(P ) = 1

[K′:K]
hn,K′(P ).)

If L is a line bundle on A generated by (�nitely many) global sections then we get
an associated morphism fL : A→ PnK and we obtain a height function on A(K̄) as

hL,K = hn,K ◦ fL.
Strictly speaking we get a well de�ned map from L to

{functions A(K̄)→ R}
{bounded functions}

due to the need to pick generating sections. We'll ignore this subtlety since, as in
the elliptic curve case, the eventual height pairing will involve a limiting process that
removes the ambiguity.
One can check that the association L 7→ hK,L is additive in L. This allows us to

extend the de�nition of hK,L to general line bundles: any line bundle L may be written
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as L1⊗L−1
2 for line bundles L1 and L2 generated by global sections (see [Har77, Theorem

2.5.17]) and we set
hK,L = hL1,K − hL2,K .

So far we've constructed something like the naive height associated to a line bundle
and we wish to pass to the canonical height. If L is symmetric ([−1]∗L ∼= L) then hK,L
is a quadratic form up to a bounded function and we de�ne

ĥK,L(P ) = lim
n→∞

1

n2
h(nP ).

Similarly, if L is antisymmetric then hK,L is additive up to a bounded function and
we de�ne

ĥK,L(P ) = lim
n→∞

1

n
h(nP ).

In general, we set

ĥK,L =
1

2

(
ĥK,L⊗[−1]∗L + ĥK,L⊗[−1]∗L−1

)
.

Now consider the abelian variety A×A∨. This comes with the Poincare line bundle
P . We de�ne the canonical height pairing

〈 , 〉 : A(K)× A∨(K)→ R
by setting

〈a, a′〉 = ĥK,P ((a, a′)) .

This is bilinear, and non-degenerate modulo torsion on either side and we de�ne the
regulator

Reg(A/K) = |det((
〈
Pi, P

′
j

〉
)i,j|

where {Pi} is a basis for A(K)/A(K)tors and {P ′i} a basis for A∨(K)/A∨(K)tors.

Remark 4.3. An elliptic curve E is canonically isomorphic to its dual and the Poincare
line bundle corresponds to the divisor E × (O) + (O) × E. One can use this to check
that our de�nition recovers the previous height from the �rst lecture.

4.4. The Néron model. To explain the non�archimedean factors appearing in the
statement of the Birch and Swinnerton�Dyer conjecture, we need to discuss the reduc-
tion theory of abelian varieties which takes the place of minimal Weierstrass equations
in the elliptic curves case. It's a remarkable fact about abelian varieties that there
exists a canonical `best model', the Néron model.
Let F be a nonarchimedean local �eld, ring of integers OF , residue �eld kF (one can

de�ne Néron models even over the ring of integers of a global �eld but we'll only be
interested one prime at a time).

Theorem 4.4. Let A/F be an abelian variety. Then there exists a smooth, separated,
�nite type group scheme A/OF with generic �bre A, satisfying the universal property
(the Néron mapping property):
for each smooth R-scheme Y/OF , any F -morphism YF → A extends uniquely to an
OF -morphism Y → A.
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Example 4.5. Let E/F be an elliptic curve with good reduction. Then the minimal
Weierstrass equation for E gives the Néron model of E.

Example 4.6. Let E/K be an elliptic curve over a function �eld K = k(C) and let
E/C be the associated elliptic surface. Then for each place v of K, the maximal smooth
open subscheme of E ⊗C OKv is the Néron model of E/OKv .
More generally, let E/F be an elliptic curve and X/OF be its minimal proper regular

model. Then the Néron model E/OF is the maximal smooth open subscheme of X .

De�nition 4.7. The reduction of an abelian variety over F is the group variety Ã =
A ×OF

kF over kF . If this is an abelian variety (i.e. if A is proper) then we say that
A/F has good reduction.
The identity component of the Néron model, denoted A0 is the open subscheme whose

special �bre is the connected component of the identity Ã0 of Ã (i.e. remove the closed
subset consisting of the union of the (�nitely many) components of the special �bre not
containing the identity element).
Note that the Néron mapping property gives A(F ) = A(OF ) giving us a reduction

homomorphism A(F )→ Ã(kF ). We write A0(F ) for the points reducing to Ã0(kF ) and
A1(F ) for those points reducing to the identity.
The group A(F )/A0(F ) is �nite and we de�ne the Tamagawa number c(A/F ) to be

its order. If one de�nes Φ := Ã/Ã0 (an etale group scheme over kF ) then one has

c(A/F ) = Φ(k̄F )Gal(k̄F /kF ).

(This is maybe a more conventional de�nition of the Tamagawa number, though less
obviously a generalisation of the elliptic curve case.)

Remark 4.8. As with elliptic curves, it's a fact that an abelian variety over a global
�eld has good reduction outside of a �nite set of places. Moreover, one still has the
Néron�Ogg�Shafarevich criterion: an abelian variety has good reduction at a place v
if and only if the GKv -action on the l-adic Tate module for some l not equal to the
characteristic of kv is unrami�ed.

De�nition 4.9. Similarly to the case for A/F , one has that ΛdΩ1
A/OF

is a free OA-
module of rank 1. It is generated by a translation invariant form ωo which is unique up
to O×F . We refer to this as the Néron di�erential.

One can show, similarly to the case of elliptic curves, that∫
A(F )

|ωo| = c(A/K)|Ã0(kF )|
qd

and, moreover, that

L(A/F,
1

q
) =
|Ã0(kF )|

qd
.

This de�nes the remaining terms in the statement of the Birch and Swinnerton�Dyer
conjecture. The discussion relating the terms of the conjecture to Adelic volumes goes
through in this setting too.
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4.5. Accessing BSD data for Jacobians. We now discuss the case where A is the
Jacobian of a curve. Since equations for the Jacobian of even a simple curve can be
extremely complicated, it is desirable from a computational (and also theoretical) point
of view to be able to access invariants of the Jacobian `on the level of the curve'. Here
we give a few examples of how to do this.

4.5.1. Tamagawa numbers. Let F be a non-archimedean local �eld, C/F a curve and
J/F its Jacobian. The following result is an arithmetic version of resolution of singu-
larities for surfaces.

Theorem 4.10. There exists a proper, regular, �at curve C over OF with generic �bre
isomorphic to C. Moreover, there is a unique `smallest' such model, the minimal proper
regular model, characterised by having no (−1)-curves in the special �bre.

The main interest of this theorem for us is that a result of Raynaud [BLR90, Theorem
9.5.4] describes the Néron model of J in terms of the minimal regular model C of
C (the precise description is quite involved, but, in particular, under quite general
conditions (including when C is semistable, or when C(F ) 6= ∅), the identity component
of the Néron model agrees with Pic0

C/OF
(the identity component of the relative Picard

functor)). This gives us explicit control over J̃0/kF in such cases.
This description of the Néron model yields the following theorem:

Theorem 4.11 ([BL99, Theorem 1.1]). Let C/K be a (smooth, proper, geometrically
connected) curve, let C/OF be the minimal regular model of C, J/F the Jacobian of C
and J /OF the Néron model of J . Denote by C̄ the base-change to k̄F of the special
�bre of C. Let I = {Z1, ..., Zn} denote the irreducible components of C̄ and let di denote
their multiplicities. De�ne the map α : ZI → ZI by

Zi 7→
∑
j

(Zi · Zj)Zj

and extending linearly (here Zi · Zj is the intersection number of Zi and Zj) and let
β : ZI → Z be the map

Zi 7→ di

(and again extend linearly). Then im(α) ⊆ ker(β) and we have an isomorphism

ΦJ (k̄F ) ∼= ker(β)/im(α),

equivariant for the action of Gal(k̄F/kF ).

Example 4.12. Consider the elliptic curve E : y2 = (x− 1)(x− p)(x+ p) over Qp for
p odd. This is a minimal Weierstrass equation for E whose reduction is a nodal cubic
curve. The scheme

E0 = Proj
(
Z[x, y, z]/(y2z − (x− z)(x− pz)(x+ pz)

)
is a projective, �at model of E, with a unique non-regular point at the node. Blowing
up once here yields the minimal regular model, whose special �bre consists of two
multiplicity one copies of P1, Z1 and Z2 say, intersecting transversally in two points.
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Thus ker(β) = Z1 − Z2 whilst im(α) = 2(Z1 − Z2). In particular the Tamagawa
number of E/Qp is equal to 2 (note that we can already see this from the fact that, for
an elliptic curve, the Néron model is the smooth part of the minimal regular model).

4.5.2. Order of the Shafarevich�Tate group modulo squares. For an elliptic curve E over
a global �eld K, the Cassels�Tate pairing is an alternating, bilinear pairing

〈 , 〉CT : X(E/K)×X(E/K)→ Q/Z
which is non-degenerate on the quotient of X(E/K) by its maximal divisible subgroup
(which, of course, is conjecturally trivial).
In particular, if the order of X(E/K) is �nite, it is a square. Since computing

X(E/K) is notoriously di�cult, when attempting to test the Birch and Swinnerton�
Dyer conjecture computationally, one often computes all the other terms and then
checks that the conjecture predicts that |X(E/K)| is a square integer.
For a general abelian variety A/K, the generalisation of the Cassels�Tate pairing is

a bilinear pairing
〈 , 〉CT : X(A/K)×X(A∨/K)→ Q/Z

which again has kernel the maximal divisible subgroup on each side.
WhenA/K is principally polarised (e.g. a Jacobian) the resulting pairing onX(A/K)

is antisymmetric. Thus its order, if �nite, is either a square or twice a square. Poonen
and Stoll famously showed that the latter can occur! (In fact, for a general abelian
variety the order need not even be twice a square.)
We have the following result of Poonen and Stoll.

Theorem 4.13 ([PS99, Theorem 8]). Let K be a global �eld and A/K a principally
polarised abelian variety with principal polarisation λ. Then there is an explicit class
c ∈X(A/K)[2] such that, if �nite, X(A/K) has square order if and only if

〈c, λ(c)〉CT = 0.

De�nition 4.14. Let F be a local �eld and C/F a curve of genus g (smooth, proper,
geom. connected as usual). We say that C is de�cient over F if it has no F -rational
divisor of degree g − 1.

Theorem 4.15 ([PS99, Corollary 12]). In the notation of the previous theorem, if A
is the Jacobian of a smooth projective curve C/K of genus g, then c = Picg−1

C/K and (as

elements of Q/Z) we have
〈c, λ(c)〉CT = N/2

where (λ is the canonical principal polarisation on the Jacobian of C and) N is the
number of de�cient places for C, i.e. the number of places v for which C is de�cient
over Kv.
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5. Exercises

Exercise 5.1. Consider the elliptic curve

E : y2 = x3 − x
over Q, write ω = dx/2y and denote by Λ the period lattice of E (with respect to ω).
(i): Show that E has additive reduction at p = 2 and good reduction elsewhere. If

you are familiar with Tate's algorithm, show that the reduction at 2 is type III and
that c(E/Q2) = 2.
(ii): Compute the torsion subgroup of E(Q) and, if you are familiar with two�descent

computations, show that E has rank 0 over Q.
(iii): Show1 that we have ∫

E(R)

|ω| = 2
√
π

Γ(1/4)

Γ(3/4)
.

(iv): Show (via the identifcation E(C) ∼= C/Λ given in lectures) that the automor-
phism of E (de�ned over Q(i)) given by

(x, y) 7→ (−x, iy)

induces multiplication by i on C/Λ and deduce that we have

Λ =
√
π

Γ(1/4)

Γ(3/4)
· Z[i].

Exercise 5.2. Let K be a global function �eld with constant �eld q and E/K an
elliptic curve. For each place v of K, let ∆v ∈ K be the minimal discriminant of E at
v (well de�ned up to units). De�ne the divisor

D(E/K) :=
∑
v∈MK

ordv(∆v)(v).

We refer to this as the minimal discriminant of E/K.
Let ω be any non-zero regular di�erential on E/K. Show2 that we have∏

v∈MK

∣∣∣∣ ωωov
∣∣∣∣
v

= q−
1
12
degD(E/K).

Exercise 5.3. Let K be a global �eld and E,E ′/K two elliptic curves related by an
isogeny φ : E → E ′ of degree d (de�ned over K). Show that we have

Reg(E/K)

Reg(E ′/K)
= drk(E/K)

1You may want to use the identity

2

∫ π/2

0

cos2a−1(θ) sin2b−1(θ) dθ =
Γ(a)Γ(b)

Γ(a+ b)
.

2[Sil09, Table 3.1] describing how various invariants of Weierstrass equations transform under a
change of variable will be useful for this.
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as elements of Q×/Q×2.
(You will need to use the fact that an isogeny and its dual are adjoints with respect

to the canonical height pairing.)

Exercise 5.4. Consider the two elliptic curves

E : y2 + y = x3 + x2 − 7x+ 5 ∆E = −7 · 13

and

E ′ : y2 + y = x3 + x2 + 13x+ 42 ∆E′ = −73 · 133.

They are related by a 3-isogeny φ : E → E ′ given explicitly by the map

(x, y) 7→
(
x3 − 2x2 − 3x+ 5

(x− 1)2
,
2x− 3 + (x3 − 3x2 + 7x− 7)y

(x− 1)3

)
.

De�ne di�erentials ω = dx
2y+1

and ω′ = dx
2y+1

on E and E ′ respectively.

In what follows we will prove the parity conjecture for E/Q under the assumption
that X(E/Q) is �nite (via local computations rather than by computing the rank).
(i): Check that both equations are minimal at all primes and that both E and E ′

have split multiplicative reduction at 7 and 13, and good reduction elsewhere. Compute
the Tamagawa numbers c(E/Q7), c(E/Q13), c(E ′/Q7) and c(E ′/Q13).
(ii): Show that we have

φ∗(ω′) = ω

and deduce that ∫
E(R)

|ω| = 3

∫
E′(R)

|ω′|.

From now on we assume that X(E/Q) is �nite.

(iii): Using parts (i) and (ii), show that we have

Reg(E/Q)

Reg(E ′/Q)
= 3a2

for some rational number a.
(iv): Compute the root number w(E/Q) and deduce that the parity conjecture holds

for E/Q.

Exercise 5.5. Let k be a �nite �eld of order q, C/k a (smooth, projective, geometrically
connected) curve and K = k(C) its function �eld.
Let E0/k be an elliptic curve and consider the constant elliptic curve E = E0 ×k K

over K. Write the Zeta function of E0/k as

Z(E0/k, T ) =
(1− αT )(1− βT )

(1− T )(1− qT )
.

(i): Show, by considering the surface E = C × E0 over k, that we have

L(E, T ) = Z(C, αT )Z(C, βT ).
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(ii): Deduce that L(E, s) has a meromorphic continuation to the whole complex plane
with poles only on the lines Re(s) = 1/2 and Re(s) = 3/2. Show also that all its zeroes
lie on the line Re(s) = 1 and that it satis�es a functional equation s↔ 2− s.
(iii): If C = P1, show that the Birch and Swinnerton-Dyer conjecture predicts that

E/K has rank 0. Prove this directly.
(iv): Still taking C = P1, show that the value of L(E, s) at s = 1 is equal to

q

|E(k)|2

and that

BSD(E/K) =
q|X(E/K)|
|E(k)|2

.

(v)*: Show that, in the same setting as (iv), the Shafarevich�Tate group of E/K is
trivial.

Exercise 5.6. Have a look at the functions o�ered by magma for computing with
L-functions of elliptic curves over function �elds3. Pick a few elliptic curves over, say,
F5(t). Compute their L-functions and anything else you wish to know about them and
the associated elliptic surfaces using the magma routines4.

Exercise 5.7. Let C : y2 = f(x) be a hyperelliptic curve over Q with f(x) ∈ Z[x]
monic, and let J/Q denote its Jacobian. Suppose that the discriminant of f(x) is
square free.
Show that the Tamagawa number C(J/Qp) is equal to 1 for all odd primes p.

Exercise 5.8. Let p be an odd prime and C/Qp be the hyperelliptic curve

C : y2 = (x− 2)((x− 1)2 − p2)(x2 − p2).

Compute the Tamagawa number of its Jacobian.

Exercise 5.9. Let C be a hyperelliptic curve over Qp. Show that C is de�cient if and
only if it has even genus and no points over any odd degree extension.

3See https://magma.maths.usyd.edu.au/magma/handbook/text/1469.
4You can use the online magma calculator http://magma.maths.usyd.edu.au/calc/ to do this.
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