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These notes cover the basic theory of representations of �nite groups over the complex numbers.
In preparing them, I drew heavily on notes of Meinolf Geck and Geo� Robinson from a previous
year's course, and online notes from Stuart Martin's course1.

My email can be found at the end of the document � comments and corrections welcome!

Recommended reading: [EGH+11], [Isa94], [Ser77].

1. Definitions, examples, Maschke's theorem

Let k be a �eld. Soon, we will take k = C to be the �eld of complex numbers.

De�nition 1.1. Let G be a group. A representation of G over k is one of the following three
equivalent pieces of data:

• a k-vector space V equipped with a k-linear (left) action of G,
• a homomorphism ρ : G→ GL(V ) for some k-vector space V ,
• a left k[G]-module.

Here GL(V ) denotes the group of k-linear automorphisms of V .

Remark 1.2. We make the following remarks concerning the equivalence claimed in the de�nition.
First, by a k-linear action of G on V we mean an action G× V → V such that:

• g · (v1 + v2) = g · v1 + g · v2 for all g ∈ G, v1, v2 ∈ V ,
• g · (λv) = λ(g · v) for all g ∈ G, λ ∈ k, v ∈ V .

Given a k-linear action of G on V , we obtain a homomorphism ρV : G→ GL(V ) by setting

ρ(g)(v) = g · v g ∈ G, v ∈ V.

Conversely, given ρ : G→ GL(V ), we make G act k-linearly on V by setting g · v = ρ(g)(v).

1https://tartarus.org/gareth/maths/notes/ii/Representation_Theory.pdf
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2 SMSTC ALGEBRAS AND REPRESENTATION THEORY

Recall that the group algebra k[G] is the k-vector space with basis the elements of G, and multi-
plication given by extending k-linearly the group operation on G. Given a k-linear action of G on a
vector space V , we make V into a (left) k[G]-module by de�ning(∑

g∈G
λgg
)
· v =

∑
g∈G

λg(g · v).

Note that given a homomorphism ρ : G → GL(V ), we can extend ρ k-linearly to a k-algebra
homomorphism k[G]→ Endk(V ); we denote this extension by ρ also.

Remark 1.3. We refer to a homomorphism G→ GLn(k), for some n ≥ 1, as a matrix representation
of G. A choice of k-basis for a �nite dimensional representation V of G gives rise to a matrix
representation with n = dimV . Conversely, given a matrix representation, we obtain a linear action
of G on kn via matrix multiplication on column vectors.

Terminology 1.4. We will usually pass between the given equivalent de�nitions of a representation
without comment. If we write something along the lines of `V is a G-representation', we mean that
V is a k-vector space equipped with a k-linear action of G. If we write `let ρ be a representation',
we mean that ρ is a homomorphism G→ GL(V ). We hope the meaning will be clear from context.
Once we �x k = C, we will drop the underlying �eld from the notation.

For this course, we will always take G �nite and V �nite dimensional. Note that for �nite G, the
group algebra k[G] is Artinian. Indeed, k[G] has �nite dimension |G| as a k-vector space, and every
left/right ideal is a k-vector subspace.

De�nition 1.5. We call a representation V of G irreducible if V 6= 0 and if the only G-invariant
subspaces of V are 0 and V . That is, if V is simple as a k[G]-module.

Remark 1.6. A 1-dimensional representation is just a homomorphism ρ : G → k×. Any such
representation is automatically irreducible (why?).

Example 1.7. Take G = S3. We think of this as the group of symmetries of an equilateral triangle,
centred at the origin in the plane:

With the vertices labelled as shown, the transposition (12) acts as re�ection in the y-axis, and
(123) acts as rotation by 2π/3 anticlockwise. We obtain a homomorphism ρ : S3 → GL2(C) by

(12) 7−→
(
−1 0
0 1

)
(123) 7−→

(
cos(2π

3 ) − sin(2π
3 )

sin(2π
3 ) cos(2π

3 )

)
=

(
−1/2 −

√
3/2√

3/2 −1/2

)
.

This is a 2-dimensional representation of G over C, which is readily checked to be irreducible (we
just need to show that G �xes no 1-dimensional subspace).
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De�nition 1.8. A homomorphism φ : V → V ′ ofG-representations is by de�nition a homomorphism
of k[G]-modules. That is, a k-linear map φ : V → V ′, commuting with the G-action in the sense
that

φ(g · v) = g · φ(v) for all g ∈ G, v ∈ V.
We denote the space of such maps as HomG(V, V ′).

Remark 1.9. Given ρ : G → GL(V ) and ρ′ : G → GL(V ′), a k-linear map φ : V → V ′ is a
homomorphism of G-representations if and only if, for all g ∈ G, the diagram

V
φ //

ρ(g)
��

V ′

ρ′(g)
��

V
φ // V ′

commutes.

Remark 1.10. One checks that two matrix representations ρ : G → GLn(k) and ρ′ : G → GLm(k)
arise from isomorphic representations if and only if n = m and there is M ∈ GLn(k) such that

ρ′(g) = Mρ(g)M−1 for all g ∈ G.
In the course of Kostya Tolmachov's lectures, we saw:

Theorem 1.11 (Maschke's theorem). Let G be a �nite group, and let k a �eld such that char(k) - |G|
(e.g. if k has characteristic 0). Then the k-algebra k[G] is Artinian semisimple.

In particular:

• every representation V of G is isomorphic to a direct sum of irreducible G-representations,
• there are only �nitely many isomorphism classes of irreducible representations of G.

Remark 1.12. In the setting of Theorem 1.11, given a �nite dimensional representation V of G, we
can decompose V as a direct sum

V ∼=
n⊕
i=1

V mi
i , mi ≥ 0,

with the Vi running over a complete collection of pairwise non-isomorphic irreducible representations
of G. Given 0 ≤ i ≤ n, we refer to the integer mi as the multiplicity of Vi as a constituent of V . It
is intrinsic to V , e.g. since it can be recovered from dimHomG(Vi, V ), and the collection of integers
(m1, ...,mn) determines V up to isomorphism.

The contrast between Maschke's theorem and the behaviour exhibited in Exercises 1.1 and 1.3
below shows that there is a big di�erence between representation theory over �elds k for which
char(k) - |G| (this course), and for which char(k) divides |G| (Modular representation theory).

Convention 1.13. From now on, we take k = C unless stated otherwise. All groups will be assumed
�nite, and all representations �nite dimensional, without further comment.

The following is an immediate consequence of Maschke's theorem, Artin�Wedderburn, and Schur's
lemma over algebraically closed �elds. It was stated and proven in Kostya Tolmachov's lectures. In
the statement, for d ≥ 1, we denote by Md(C) the ring of d× d matrices over C.
Theorem 1.14. Let G be a �nite group. Then we have an isomorphism of C-algebras

(1.15) C[G] ∼=
n∏
i=1

Mdi(C),

for some integers n, di ≥ 1.
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Part (i) of the following corollary is usually referred to as `Burnside's lemma'.

Corollary 1.16. Let G be a group. Then:

(i) letting d1, ..., dn be the dimensions of the distinct irreducible representations of G, we have

|G| =
n∑
i=1

d2
i .

(ii) the number of distinct irreducible representations of G is equal to the number of conjugacy
classes of elements of G.

Proof. Note that in (1.15), the integer n is the number of isomorphism classes of irreducible repre-
sentations of G, and the integers d1, ..., dn give the dimensions of these representations. (i). From
the above observation, we �nd

|G| = dimC[G] =

n∑
i=1

d2
i .

(ii). Note that for any d ≥ 1, the centre of the matrix ring Md(C) is isomorphic to C (scalar
matrices). Thus from (1.15) we see that the number of isomorphism classes of irreducible represen-
tations of G is equal to the dimension of Z(C[G]) as a complex vector space. On the other hand,
take h ∈ G and take x =

∑
g∈G λgg in C[G]. Then we have

hxh−1 =
∑
g∈G

λghgh
−1 =

∑
g∈G

λh−1ghg.

From this we see that x lies in the centre of C[G] if and only if the function g 7→ λg is constant on
conjugacy classes. It follows that a basis for Z(C[G]) as a C-vector space is given by the collection
of class sums {∑

g∈C
g : C ⊆ G conjugacy class

}
.

Thus the dimension of Z(C[G]) is equal to the number of conjugacy classes of elements of G. �

Example 1.17. Take G = S3. There are two, necessarily irreducible, 1-dimensional representations.
These are:

• the trivial homomorphism G→ C×, sending each element of G to 1,
• the sign homomorphism sgn : G→ C× with kernel A3.

Example 1.7 details a third irreducible representation, which is 2-dimensional. By Corollary 1.16,
we see that this is the complete list of irreducible representations of S3 (up to isomorphism).

De�nition 1.18. We have the following basic constructions/de�nitions:

• the trivial representation of a group G is the 1-dimensional vector space C with every element
of G acting trivially; it is irreducible.
• given a representation V of G, the dual representation is V ∗ = Hom(V,C) (i.e. the C-linear
dual) with g ∈ G acting via

(g · φ)(v) = φ(g−1v).

Note that if we �x a basis for V , and view g ∈ G as acting on V as a matrix M , then the
matrix of g with respect to the dual basis for V ∗ is (M−1)t.
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• more generally, given G-representations V and W , we make the C-vector space Hom(V,W )
into a G-representation by setting

(g · φ)(v) = gφ(g−1v).

It is a G-representation of dimension dim(V ) · dim(W ).
• Given G representations V and W as above, we make the tensor product V ⊗C W into a
G-representation by setting

g · (v ⊗ w) = gv ⊗ gw.
One checks that the canonical isomorphism

α : V ∗ ⊗W ∼−→ Hom(V,W ),

de�ned by
α(ϕ⊗ w)(v) = ϕ(v)w,

is an isomorphism of G-representations.
• We refer to C[G], viewed as a left C[G]-module, as the regular representation of G. If
V1, ..., Vn denote the distinct irreducible representations of G, of dimensions d1, ..., dn, then
we see from (1.15) that we have an isomorphism of G-representations

C[G] ∼=
n⊕
i=1

V di
i .

That is, every irreducible representation of G appears in the regular representation with
multiplicity equal to its dimension.

1.1. Exercises.

1.1. Let G be a �nite group, and let k be a �eld whose characteristic divides |G|. Show that the
element x =

∑
g∈G g lies in the Jacobson radical of k[G]. Thus the group ring k[G] is not

semisimple in this case. Hint: start by showing that x is central and that x2 = 0.

1.2. Let k be a �eld and let G be a �nite group with char(k) - |G|. In this exercise, we will show
directly that the Jacobson radical of k[G] is trivial. For x ∈ k[G], denote by ρ(x) the k-linear
endomorphism of k[G] corresponding to left multiplication by x.
(a) De�ne τ : k[G] → k sending

∑
g∈G λgg to λ1. Show that, for any x ∈ k[G], we have

trace(ρ(x)) = |G|τ(x).
(b) Show that if x ∈ Rad(k[G]) then trace(ρ(gx)) = 0 for all g ∈ G. Hint: Rad(k[G]) is

nilpotent.
(c) Deduce from (a) and (b) that Rad(k[G]) = 0.

1.3 (a) Let p be a prime, let G be a �nite p-group, and let V be a �nite dimensional irreducible
representation of G over Fp. Show that V is 1-dimensional, with G acting trivially.

(b) Let G be cyclic of order p, with generator g, and let V be a 2-dimensional Fp-vector
space with basis v1, v2. Show that the rule

g · v1 = v1 and g · v2 = v1 + v2

extends to an action of G on V , and that the resulting representation has a unique 1-
dimensional G-invariant subspace. Deduce that V is indecomposable as a Fp[G]-module,
but is not simple.

In the next three exercises, G is a �nite group, and all representations are assumed to be �nite
dimensional and over C.

1.4 Show that G is abelian if and only if every irreducible representation of G is 1-dimensional.
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1.5 How many irreducible representations does the Dihedral group of order 2n have? (It will
help to break into cases depending on whether n is odd or even.)

1.6 A representation V ofG is called faithful if the corresponding homomorphism ρ : G→ GL(V )
has trivial kernel. Show that ifG has a faithful irreducible representation, then Z(G) is cyclic.
Hint: if g ∈ Z(G), then ρ(g) is an automorphism of V commuting with the G-action.

2. Characters and orthogonality

One of the basic aims of this course is to develop tools which one can (try to) use to classify the
irreducible representations of a given group G. So far, we have seen in particular that:

• the number of (isomorphism classes of �nite dimensional, complex) irreducible representa-
tions of a (�nite) group G is equal to the number of conjugacy classes of elements of G,
• if the irreducible representations of G have dimensions d1, ..., dn, then we have

|G| =
n∑
i=1

d2
i .

We already say the utility of these results when classifying the irreducible representations of S3 in
Example 1.17. In this section, we will collect several further facts along these lines. The key concept
is that of the character of a representation.

De�nition 2.1. Let V a representation of G. Denoting by ρV : G → GL(V ) the corresponding
homomorphism, we de�ne the character of V to be the function χV : G→ C given by

χV (g) = trace
(
ρV (g)

)
.

Example 2.2. The 2-dimensional irreducible representation of S3 in Example 1.7 has character χ
satisying

χ(1) = trace

(
1 0
0 1

)
= 2, χ

(
(12)

)
= 0, χ

(
(123)

)
= −1.

The following lemma records some basic facts about characters of representations.

Lemma 2.3. Let V be a representation of G. Then we have the following:

(i) χV is a class function, and is an isomorphism invariant of V ,
(ii) we have

χV (1) = dimV and χV (g−1) = χV (g) (g ∈ G),

where (·) denotes complex conjugation,
(iii) we have

χV ∗(g) = χV (g) (g ∈ G),

(iv) given another G-representation W , we have

χV⊕W = χV + χW and χV⊗W = χV · χW .

Proof. (i). For the �rst claim, note that conjugate matrices have the same trace. For the second, if
V ′ is isomorphic to V , we can choose bases so that any g ∈ G acts by the same matrix on V as it
does on V ′.

(ii). Let ρV : G → GL(V ) denote the corresponding homomorphism. Then (with respect to any
basis) ρV (1) is the n× n identity matrix, where n = dimV . This has trace dimV . Next, take any
g ∈ G. Since G is �nite, there is n ≥ 1 such that gn = 1. Then ρV (g)n is the identity on V . In
particular, the minimal polynomial of ρV (g) divides xn − 1, hence has distinct roots. Consequently,
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ρV (g) is diagonalisable, and its eigenvalues are roots of unity. Denoting these eigenvalues by λ1, ..., λn
(appearing with multiplicity), we have

χV (g−1) = λ−1
1 + ...+ λ−1

n = λ1 + ...+ λn = χV (g).

(iii). Follows from (ii) and the fact that a matrix and its transpose have the same trace.
(iv). Let {ei}ni=1 be a basis for V and {fi}mi=1 be a basis for W . Computing the matrix of ρV⊕W

with respect to the basis {ei}i ∪ {fj}j shows that χV⊕W = χV + χW . Computing the matrix of
ρV⊗W with respect to the basis {ei ⊗ fj}i,j gives χV⊗W = χV · χW . �

Terminology 2.4. We say that a class function χ : G → C is a character if χ = χV for some
representation V of G. In this case we say that V a�ords the character χ, and refer to χ(1) as the
degree of χ. By Lemma 2.3, it is equal to the dimension of any representation V a�ording χ. For
this reason, we will sometimes also refer to χ(1) as the dimension of χ.

Example 2.5. By Lemma 2.3(i), we need only record the value of the character of a representation
on representatives of conjugacy classes. Thus the computation in Example 2.2 tells us completely
what the character of the 2-dimensional irreducible representation ρ of S3 is. As we have seen, S3

has two further irreducible representations: the trivial representation and the sign homomorphism.
We display the values of these characters in the following table, which we refer to as the character
table of S3.

1 (12) (123)
1 1 1 1
sgn 1 −1 1
ρ 2 0 −1

De�nition 2.6. The character table of G is the (square, thanks to Corollary 1.16) array with

• rows indexed by irreducible representations of G,
• columns indexed by (representatives of) conjugacy classes,
• entries the common value of the corresponding character on the conjugacy class.

The character table of G is a hugely important invariant. We will see that:

• the character of a representation determines it up to isomorphism,
• the character table of G is `highly structured', making it easy to complete from partial
information.

These facts make character theory a very powerful tool in classifying the irreducible representations
of G.

2.1. Orthogonality relations. The following basic result underpins everything that follows.

Lemma 2.7. Let V and W be irreducible representations of a group G. Then we have

dimHomG(V,W ) =

{
1 V ∼= W,

0 otherwise.

Proof. By Schur's lemma, either V ∼= W or HomG(V,W ) = 0.When V is isomorphic to W , we have
HomG(V,W ) ∼= EndG(V ). As was shown in Kostya Tolmachov's lectures, since V is irreducible and
C is algebraically closed, we have EndG(V ) = C, completing the proof.2 �

2Let φ ∈ EndG(V ). Since C is algebraically closed, φ has a non-zero eigenvector, v say, with corresponding
eigenvalue λ. Then φ− λ · id is an element of EndG(V ) which (since v is in the kernel) is not an isomorphism. Since
V is simple we conclude that φ− λ · id = 0, hence φ is a scalar.
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Theorem 2.8 (First orthogonality theorem for characters). Let V and W be representations of a
group G. Then

1

|G|
∑
g∈G

χV (g)χW (g) = dimHomG(V,W ).

In particular, if V and W are irreducible, then

1

|G|
∑
g∈G

χV (g)χW (g) =

{
1 V ∼= W,

0 otherwise.

We begin with the following lemma (exercise: why is this a necessary consequence of the theo-
rem?). In the statement, V G denotes the set of elements of V �xed by every g ∈ G.

Lemma 2.9. Let V be a G-representation. Then we have

dimV G =
1

|G|
∑
g∈G

χV (g).

Proof. Let ρV : G→ GL(V ) be the corresponding homomorphism, and de�ne the endomorphism

π =
1

|G|
∑
g∈G

ρV (g)

of V . Since π averages over elements of G, we have im(π) ⊆ V G. Further, if v ∈ V G then π(v) = v.
Thus π is projection onto im(π) = V G. If we pick a basis B for V G, and a basis B′ for ker(π), then
B t B′ is a basis for V with respect to which π is given by the matrix(

idV G 0
0 0

)
.

Thus we have

dimV G = trace(π) =
1

|G|
∑
g∈G

χV (g)

as claimed. �

Proof of Theorem 2.8. With V and W as in the statement, we have

HomG(V,W ) = Hom(V,W )G ∼= (V ∗ ⊗W )G.

Combining Lemma 2.9 with Lemma 2.3 gives

dimHomG(V,W ) =
1

|G|
∑
g∈G

χV ∗⊗W (g) =
1

|G|
∑
g∈G

χW (g)χV (g).

Replacing g by g−1 in the sum and using Lemma 2.3(ii) gives the result. �

De�nition 2.10. We de�ne C(G) to be the C-vector space of complex valued class functions on G.
That is, functions f : G→ C such that

f(ghg−1) = f(h) for all g, h ∈ G.

We equip C(G) with the complex inner product de�ned by

〈f1, f2〉 =
1

|G|
∑
g∈G

f1(g)f2(g).
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Remark 2.11. The functions {
1C : C conjugacy class of G

}
give a basis for C(G) (here 1C(g) is 1 if g ∈ C, and 0 otherwise). In particular, C(G) has dimension
equal to the number of conjugacy classes of G.

Corollary 2.12 (of Theorem 2.8). The irreducible characters of G (i.e. the characters of the
irreducible representations of G) give an orthonormal basis for C(G).

Proof. Theorem 2.8 shows that these characters are orthonormal, and in particular linearly inde-
pendent. The result now follows from the fact that the number of irreducible characters is equal to
the number of conjugacy classes of G (Corollary 1.16). �

Remark 2.13. Given a class function f : G→ C, we see from Corollary 2.12 that we have

f =
∑
χ irred

〈f, χ〉χ.

Corollary 2.14 (of Theorem 2.8). Let V be a representation of G. Then

(i) given an irreducible representation W , the multiplicity of W as a constituent of V is equal
to 〈χV , χW 〉,

(ii) V is determined up to isomorphism by its character,
(iii) V is irreducible if and only if 〈χV , χV 〉 = 1.

Proof. (i). From Lemma 2.7, the multiplicity of W in V is equal to dimHomG(W,V ). Theorem 2.8
now gives the result.

(ii). By part (i), the character of V determines the decomposition of V into irreducibles, hence
determines V up to isomorphism.

(iii). By Theorem 2.8 we have 〈χV , χV 〉 = dimEndG(V ). This is equal to 1 if and only if
EndG(V ) = C, if and only if V is irreducible. �

Remark 2.15. It follows immediately from Corollary 2.14(iii) and Lemma 2.3(iii) that if V is irre-
ducible, then so is V ∗. In particular, if χ is an irreducible character, so is χ. (See also Exercise
2.1.)

Remark 2.16. Given irreducible characters χ1 and χ2, we can express Theorem 2.8 as saying that∑
C ccl of G

|C|χ1(C)χ2(C) =

{
|G| χ = χ′,

0 otherwise,

where χ1(C) (resp. χ2(C)) is the common value of χ1 (resp. χ2) on C. This says that the rows of
the character table of G are orthogonal when appropriately weighted.

Example 2.17. Consider again the character table of S3. Here we have augmented the table to
record the sizes of the conjugacy classes above the representative element.

#ccl 1 3 2
ccl rep. 1 (12) (123)

1 1 1 1
sgn 1 −1 1
ρ 2 0 −1

Orthogonality between e.g. sgn and ρ says

1

6
(1 · 1 · 2 + 3 · −1 · 0 + 2 · 1 · −1) = 0.



10 SMSTC ALGEBRAS AND REPRESENTATION THEORY

Theorem 2.18 (Second orthogonality for characters). Let χ1, ..., χn be the irreducible characters of
G, and let C,C ′ be conjugacy classes of G. Then we have

n∑
i=1

χi(C)χi(C ′) =

{
|G|
|C| C = C ′,

0 otherwise.

Remark 2.19. Theorem 2.18 shows that distinct columns of the character table of G are orthogonal.

Proof. First note that

〈1C ,1C′〉 =
1

|G|
∑
g∈G

1C(g)1C′(g) =

{
|C|
|G| C = C ′,

0 otherwise.

On the other hand, Remark 2.13 gives

1C =

n∑
i=1

〈1C , χi〉χi =
n∑
i=1

|C|χi(C)

|G|
χi.

The result follows by taking the inner product of this with the analagous expression for 1C′ , and
using Theorem 2.8. �

Remark 2.20. Let C be a conjugacy class of G, and let g ∈ C. Then the expression |G||C| appearing

in Theorem 2.18 is the order of the centraliser of g in G, i.e. of the subgroup

CG(g) = {h ∈ G : gh = hg}.
This follows from the orbit�stabiliser theorem.

Example 2.21. Orthogonality is a powerful tool for �lling in the character table from partial
information. Continuing with the example of G = S3, suppose we had found the representations 1
and sgn, but had not found the 2-dimensional representation. Thus we start with the incomplete
character table

#ccl 1 3 2
ccl rep. 1 (12) (123)

1 1 1 1
sgn 1 −1 1
...

Since there are 3 conjugacy classes in S3 (the number of cycle types), we are looking for one additional
irreducible character. By Burnside's lemma, we know that the squares of the dimensions of the
irreducible representations sum to |G| = 6 (this is the C = C ′ = {1} case of Theorem 2.18). Thus
the missing representation must have dimension 2. Call it ρ. The complete character table then has
the form

#ccl 1 3 2
ccl rep. 1 (12) (123)

1 1 1 1
sgn 1 −1 1
ρ 2 a b

for some a, b. Orthogonality of the �rst and second columns gives

1 · 1 + 1 · −1 + 2 · a = 0.

Thus a = 0. Similarly, orthogonality of the �rst and third columns gives b = −1, and we have found
the complete character table.
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Remark 2.22. In Examples 2.17 and 2.21 we displayed the sizes of the conjugacy classes above the
representative element. This is convenient for calculations with orthogonality. Note however that one
can read o� the sizes of the conjugacy classes from the complete character table via Theorem 2.18.

2.2. Exercises.

2.1 Show directly that if a representation V is reducible, then so is V ∗. Applying this with V
replaced by V ∗ gives a direct proof of the claim in Remark 2.15.

2.2. Let ρ : G→ GL(V ) be a representation of G, with corresponding character χ.
(a) Show that, for any g ∈ G, we have |χ(g)| ≤ dimV .
(b) Show that g ∈ ker(ρ) if and only if χ(g) = χ(1). (In this way, the kernel of an irreducible

representation can be read o� from the character table.)

2.3 (a) Compute the character table of Z/2Z× Z/2Z.
(b) Show that both D8 (the dihedral group of order 8) and Q8 have a normal subgroup of

order 2, the quotient by which is isomorphic to Z/2Z×Z/2Z. Here Q8 is the quaternion
group

Q8 = {±1,±i,±j,±k},
where −1 is central and squares to 1, and i2 = j2 = k2 = ijk = −1.

(c) Using (a), write down four 1-dimensional characters of D8, and four 1-dimensional
characters of Q8.

(d) Complete the character tables of D8 and Q8, and compare the answers.

2.4 Let n ≥ 1 be odd. Compute the character table of the dihedral group D2n. Hint: Start
by computing the conjugacy classes. Then write down some irreducible 2-dimensional rep-
resentations by analogy with Example 1.7. It may be helpful to know that there are two
1-dimensional representations.

If you have enough energy left, compute the character table in the n even case; there are
now four 1-dimensional representations.

3. Methods for constructing characters

In this section we give some additional methods for producing characters of �nite groups.

3.1. Lifting from quotients. Let G be a �nite group, and let N be a normal subgroup of G. Given
a representation ρ : G/N → GL(V ), we can precompose with the quotient map π : G → G/N to
obtain a representation of G. Equivalently, given a linear action of G/N on V , we make G act on
V via

g · v = π(g)v.

Representations of G obtained this way are referred to as lifts of representations of G/N . Similarly,
we say that the character of such a representation is a lift of a character of G/N . Note that the
dimension of a representation of G/N is the same as that of its lift, and that a representation of
G/N is irreducible if and only if its lift to G is (since the invariant subspaces are the same).

Example 3.1. Take G = S4, and let V4 be the normal subgroup

V4 = {1, (12)(34), (13)(24), (14)(23)}

generated by double transpositions. The quotient of G by V4 is isomorphic to S3. To see this
isomorphism one can e.g. note that since V4 is a normal subgroup, G acts by conjugation on the 3
non-identity elements of V4, giving rise to a homomorphism

G −→ Sym
(
{(12)(34), (13)(24), (14)(23)}

) ∼= S3,
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which one checks is an isomorphism. Let ρ be the 2-dimensional irreducible representation of S3,
and denote by ρ̃ its lift to G. Then the character of the resulting irreducible representation ρ̃ of S4

is as follows:
1 (12) (12)(34) (123) (1234)

ρ̃ 2 0 2 −1 0

We'll see shortly how to complete the character table of S4.

3.2. Linear characters. Recall that a 1-dimensional representation of G is the data of a homo-
morphism ρ : G→ C×, and is automatically irreducible.

De�nition 3.2. A linear character of G is the character of a 1-dimensional representation of G.

Remark 3.3. Since the trace of a 1×1 matrix is just its single entry, the character of a 1-dimensional
representation is just the homomorphism G→ C× itself. Thus a linear character of G is precisely a
homomorphism G→ C×, and is automatically irreducible.

Example 3.4. The group S3 has 2 linear characters: 1 and sgn.

The following proposition gives a way to use linear characters to produce new irreducible characters
from old ones. See Example 3.17 for an example of this in action.

Proposition 3.5. Let χ be an irreducible character of G, and let ψ be a linear character of G. Then
ψ ·χ (the function sending g ∈ G to ψ(g)χ(g)) is again an irreducible character of G, denoted ψ ·χ.

Proof. Let V be a representation of G a�ording the character χ (i.e. G acts linearly on V , and the
corresponding character χV is equal to χ). Denote by Vψ the representation with underlying vector
space V , and new G-action given by setting, for g ∈ G and v ∈ V ,

g · v = ψ(g)g(v).

One checks that Vψ is irreducible if and only if V is (the G-invariant subspaces of V and Vψ are the
same), and that the character of Vψ is ψ · χ. �

Remark 3.6. In the above proof, if W is a 1-dimensional vector space a�ording the linear character
ψ, then Vψ is isomorphic to the G-representation W ⊗ V .

Characters of abelian groups. Suppose that G is abelian. We saw in the exercises that all
irreducible representations of G are 1-dimensional. That is, every irreducible character of G is
linear. One (not particularly conceptual) way to see this is to note that, since G has |G| conjugacy
classes, the only way that both parts of Corollary 1.16 can hold is if each irreducible representation
of G has dimension 1. We now describe all of the |G|-many irreducible representations of G.

By the structure theorem for �nite abelian groups, we can �x an isomorphism

(3.7) G ∼= Z/n1Z⊕ · · · ⊕ Z/nrZ.

Consequently, we need only describe the linear characters of the right hand side of (3.7). For each
1 ≤ i ≤ r, �x a primitive ni-th root of unity ζi. For example, we can take ζi = exp(2π

√
−1/ni).

De�ne the homomorphism

χi : Z/n1Z⊕ · · · ⊕ Z/nrZ −→ C×

(a1, ..., ar) 7−→ ζaii .

Then one checks that the linear characters of G correspond under (3.7) to the homomorphisms{ r∏
i=1

χmii : 0 ≤ mi < ni for all i
}
.
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Example 3.8. Let G be cyclic of order 3, generated by g, so that G = {1, g, g2}. Let ζ3 =
exp(2πi/3). Then the character table of G is as follows:

1 g g2

1 1 1 1
χ 1 ζ3 ζ2

3

χ2 1 ζ2
3 ζ3

Example 3.9. Let G be isomorphic to Z/2Z⊕Z/2Z, generated by a and b, so that G = {1, a, b, ab}.
Then the character table of G is as follows:

1 a b ab
1 1 1 1 1
χ1 1 −1 1 −1
χ2 1 1 −1 −1

χ1 · χ2 1 −1 −1 1

Linear characters of general groups. We now describe the linear characters of an arbitrary
group G.

De�nition 3.10. The derived subgroup (or commutator subgroup) of G, denoted G′, is the subgroup
generated by all commutators

[g, h] = ghg−1h−1 g, h ∈ G.
It is a normal subgroup of G (check!). We de�ne the abelianisation of G, Gab, to be the quotient
G/G′.

Remark 3.11. The abelianisation of G is the maximal abelian quotient of G; any homomorphism
from G to an abelian group factors through the quotient map G→ Gab.

Lemma 3.12. The linear characters of G are precisely the lifts of irreducible characters of Gab. In
particular, the number of linear characters of G is equal to |Gab|.
Proof. That every linear characters is a lift fromGab follows from Remark 3.11; every homomorphism
G → C× factors through Gab. Now note that, as in Section 3.2, the number of linear characters of
Gab is equal to |Gab|. �

Example 3.13 (Character table of A4). Take G = A4. The quotient of G by V4 is isomorphic to
Z/3Z, generated by the image of a 3-cycle. Since the quotient is abelian, we deduce that G′ ⊆ V4.
We claim that G′ = V4. First note that G

′ 6= 1 else G would be abelian. If G′ had order 2 then Gab

would be an abelian group of order 6, hence isomorphic to Z/6Z. Since G has no elements of order
6, this is impossible. We conclude that G′ = V4, G

ab ∼= Z/3Z, and that G has 3 linear characters,
as shown:

1 (12)(34) (123) (132)
1 1 1 1 1
χ1 1 1 ζ3 ζ2

3

χ2
1 1 1 ζ2

3 ζ3

Since A4 has 4 conjugacy classes, there is precisely one additional irreducible character. We can
complete the character table by Burnside's lemma and column orthogonality:

1 (12)(34) (123) (132)
1 1 1 1 1
χ1 1 1 ζ3 ζ2

3

χ2
1 1 1 ζ2

3 ζ3

χ2 3 −1 0 0
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Example 3.14 (Linear characters of Sn, n ≥ 5). Let G = Sn for some n ≥ 5. Then An is a
normal subgroup of Sn, and the quotient of G by An is isomorphic to the abelian group Z/2Z. In
particular, G′ is contained in An. Since G′ is normal in G, it is normal in An also. Since An is
simple, we see that either G′ = 1 or G′ = An. Since G itself is nonabelian, it is the latter which
occurs. Thus Gab is isomorphic to Z/2Z, and G has 2 linear characters: the trivial character and
the sign homomorphism.

3.3. Permutation representations. Starting with an action of a group on a set, there is a natural
way to produce a representation of G. Representations arising in this way are called permutation
representations.

De�nition 3.15 (Permutation representation). Let G be a �nite group, and let X be a �nite set
on which G acts. We denote by CX the C-vector space with basis {ex : x ∈ X} (often we will just
write x in place of ex). Thus a typical element of CX has the form∑

x∈X
λxex

for some coe�cients λx ∈ C. We de�ne a linear action of G on CX by setting

g · ex = egx

and extending linearly. So G permutes the basis elements of CX according to its action on X.

The character of a permutation representation has a particularly simple form:

Lemma 3.16. Let G act on X, let CX be the corresponding permutation representation, and let
χX denote the corresponding character. Then for any g ∈ G we have

χX(g) = |{x ∈ X : gx = x}|.

Proof. Ennumerate X as X = {x1, ..., xn}, let ex1 , ..., exn be the corresponding basis for CX, and
let ρ : G → GLn(C) denote the corresponding matrix representation. Fix g ∈ G, �x i between 1
and n, and let j be such that gxi = xj . Since g · exi = eg·xi = exj , we see that the ith column of
the matrix ρ(g) is zero apart from a single 1 lying in the jth row. In particular, this single non-zero
entry lies on the diagonal if and only if g · xi = xi. From this we see that the trace of ρ(g) is the
number of elements of X �xed by g, as claimed. �

Example 3.17 (Character table of S4). Take G = S4. There are 3 irreducible characters which
lift from S4/V4

∼= S3: the trivial character, the linear character sgn, and the (character of the)
representation ρ̃ of Example 3.1. This gives the partial character table:

#ccl 1 6 3 8 6
ccl rep 1 (12) (12)(34) (123) (1234)
1 1 1 1 1 1
sgn 1 −1 1 1 −1
ρ̃ 2 0 2 −1 0

Next, take X = {1, 2, 3, 4} with its natural action of S4, and consider the corresponding permutation
representation CX. Its character χX is as shown:

#ccl 1 6 3 8 6
ccl rep 1 (12) (12)(34) (123) (1234)
χX 4 2 0 1 0

We compute

〈χX , χX〉 =
1

24
(1 · 42 + 6 · 22 + 8 · 12) = 2.
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On the other hand, writing χX =
∑

χ irredmχχ as a sum of irreducible characters, we see from
Theorem 2.8 that

〈χX , χX〉 =
∑
χ irred

m2
χ.

From this we see that χX must be the sum of 2 distinct irreducible characters. Further, we have

〈χX ,1〉 =
1

24
(4 + 6 · 2 + 8) = 1,

so the trivial character appears in χX with multiplicity 1 (the corresponding 1-dimensional subspace
of CX �xed by G is easy to write down: it is generated by

∑
x∈X ex). Combining the above

observations we deduce that χ := χX −1 is an irreducible character. This allows us to complete the
character table of S4:

#ccl 1 6 3 8 6
ccl rep 1 (12) (12)(34) (123) (1234)
1 1 1 1 1 1
sgn 1 −1 1 1 −1
ρ̃ 2 0 2 −1 0

χ = χX − 1 3 1 −1 0 −1
sgn · χ = 3 −1 −1 0 1

We remark that, more geometrically, one can construct a 3-dimensional irreducible representation
of S4 by viewing S4 as the group of rotational symmetries of the cube, via the action on the 4 long
diagonals.

3.4. Symmetric and exterior squares. Recall from De�nition 1.18 and Lemma 2.3 that if V
and W are representations of G then so is the tensor product V ⊗W , and that χV⊗W = χV · χW .
Given an irreducible representation V and n ≥ 2, it is often the case that V ⊗n contains irreducible
constituents di�erent from V . Thus by studying tensor powers of an initial irreducible representation
we can often identify new ones. The case of V ⊗ V is already interesting.

De�nition 3.18. Let V be a representation of G, and denote by τ the G-automorphism of V ⊗ V
de�ned on pure tensors by

τ(v ⊗ v′) = v′ ⊗ v.

Note that τ2 = 1. Denote by S2V the 1-eigenspace for τ , and denote by Λ2V the (−1)-eigenspace.
We refer to S2V as the symmetric square of V , and refer to Λ2V as the exterior square of V . Since τ
commutes with G, both S2V and Λ2V are preserved by the action of G, hence are subrepresentations
of V ⊗ V . Further, since τ2 = 1 we have (as G-representations)

(3.19) V ⊗ V = S2V ⊕ Λ2V.

Remark 3.20. If B = {v1, ..., vn} is a basis for V , then S2V has basis

{vi ⊗ vj + vj ⊗ vi : 1 ≤ i ≤ j ≤ n},

whilst Λ2V has basis

{vi ⊗ vj − vj ⊗ vi : 1 ≤ i < j ≤ n}.

In particular, if dimV = n then

dimS2V = 1
2n(n+ 1) and dim Λ2V = 1

2n(n− 1).
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Lemma 3.21. Let V be a representation of G a�ording character χ. Then

χ2 = χS2V + χΛ2V .

Moreover, for any g ∈ G, we have

χS2V (g) = 1
2(χ2(g) + χ(g2)) and χΛ2V (g) = 1

2(χ2(g)− χ(g2)).

Proof. That χ2 = χS2V + χΛ2V follows from (3.19). Now �x g ∈ G, and let {v1, ..., vn} be a basis of
V consisting of eigenvectors for g (or more precisely, for ρV (g)). Say gvi = λiv for each i. Then

g(vi ⊗ vj + vj ⊗ vi) = λiλj(vi ⊗ vj + vj ⊗ vi).

Using Remark 3.20, we conclude that

χS2V (g) =
∑

1≤i≤j≤n
λiλj

= 1
2

( n∑
i=1

λi

)2
+ 1

2

n∑
i=1

λ2
i

= 1
2χ

2(g) + 1
2χ(g2)

as claimed. The formula for χΛ2V can be proven similarly, or follows from the one for χS2V and the
identity χ2 = χS2V + χΛ2V . �

Example 3.22. Exercise 3.3 below computes the character table of the symmetric group S5. In part
(e) of that exercise, the existence of an irreducible character of S5 having dimension 6 is deduced from
the orthogonality relations. Here we constuct it as the exterior square of the standard representation
of S5. Speci�cally, let X = {1, 2, 3, 4, 5}, let CX be the corresponding permutation representation
of S5, and denote by χX its character. In part (b) of Exercise 3.3, it is shown that χX − 1 is the
character of an irreducible representation of S5 (the standard representation). Its character is as
follows:

#ccl 1 10 15 20 20 30 24
ccl rep 1 (12) (12)(34) (123) (123)(45) (1234) (12345)

χ := χX − 1 4 2 0 1 −1 0 −1

Write Λ2χ for the character of the exterior square of the standard representation of S5, which has
dimension 1

2 · 4 · 3 = 6. By Lemma 3.21, it has character

#ccl 1 10 15 20 20 30 24
ccl rep 1 (12) (12)(34) (123) (123)(45) (1234) (12345)

Λ2χ 6 0 −2 0 0 0 1

Since 〈
Λ2χ,Λ2χ

〉
=

1

120
(62 + 15 · (−2)2 + 24 · 12) = 1,

we deduce that Λ2χ is an irreducible character of S5.

3.5. Exercises.

3.1. Let G be a �nite group. Recall from Exercise 2.2 that the kernel of a representation ρ : G→
GL(V ) is the set of g ∈ G such that χ(g) = χ(1). In this exercise we use this observation to
study normal subgroups of G.
(a) Show that if χ(g) = χ(1) for all irreducible characters χ of G, then g = 1.

Hint: either consider the indicator function of the identity element, or start by showing
that G admits a faithful (not necessarily irreducible) representation.
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(b) For an irreducible character χ, write ker(χ) for the set of g ∈ G such that χ(g) = χ(1),
noting that this is a normal subgroup of G. Show that every normal subgroup N of G
has the form

N = ∩χ∈S ker(χ)

for some subset S of irreducible characters of G (and conversely). Hint: consider lifts
of characters of G/N .

(c) Show that G is simple if and only if, for every non-trivial irreducible character χ, and
for every element g 6= 1 of G, we have χ(g) 6= χ(1).

3.2 Let G be a �nite group, acting on a �nite set X. Denote by χX the character of the
corresponding permutation representation.
(a) Show that if X decomposes as a disjoint union

X = X1 t ... tXr

of orbits of G, then CX decomposes as a direct sum of G-representations

CX =
r⊕
i=1

CXi.

(b) Show that 〈χX ,1〉 is the number of orbits of G on X.
(c) Suppose |X| > 2. We say that G is doubly transitive on X if the diagonal action of G

on X ×X has precisely 2-orbits:

{(x, x) : x ∈ X} and {(x1, x2) ∈ X ×X : x1 6= x2}.

Show that G acts doubly transitively on X if and only if χX − 1 is an irreducible
character of G.

(d) Show that if G = Sn and X = {1, 2, ..., n} then χX − 1 is an irreducible character of G
(the corresponding representation is called the standard representation of Sn).

3.3 In this exercise, we will compute the character table of G = S5.
(a) Fill out the portion of the character table corresponding to 1 and sgn.
(b) By considering the action of G on the set {1, 2, 3, 4, 5}, and using Proposition 3.5, �nd

two 4-dimensional irreducible characters of S5.
(c) Show that G has 6 Sylow 5-subgroups (what are they?). By considering the action by

conjugation of G on its Sylow 5-subgroups, write down an irreducible character of G of
dimension 5.

(d) Use Proposition 3.5 and orthogonality to complete the character table of G.
(e) Deduce that A5 is the unique non-trivial normal subgroup of S5.

4. Induction, restriction, Frobenius reciprocity

Let G be a �nite group. Previously, given a normal subgroup N of G, we saw how to lift
representations (resp. characters) of G/N to representations (resp. characters) of G. We now turn
to two further `change of group' operations: restriction and induction.

De�nition 4.1 (Restriction). Let H be a subgroup of G, and let V be a representation of G. We
de�ne the restriction of V to H, denoted ResGHV , to be the H-representation obtained by restricting
the G action on V to H. Similarly, given a class function ψ : G→ C, we denote by ResGHψ : H → C
the function obtained by restricting ψ to H.



18 SMSTC ALGEBRAS AND REPRESENTATION THEORY

Remark 4.2. If V a�ords character χ (i.e. V is a representation of G such that χV = χ), then
ResGHV a�ords character ResGHχ. In particular, the function

ResGH : C(G) −→ C(H)

takes character to characters (we say that a class function ψ is a character if it is equal to χV for
some representation V ).

The more interesting operation is induction, which takes H-representations to G-representations.

De�nition 4.3 (Induction). Let H be a subgroup of G and let V be a representation of H. Then
we de�ne the G-representation IndGHV to be the (G-representation corresponding to the) left C[G]-
module

IndGHV = C[G]⊗C[H] V.

(See the appendix to this lecture for a discussion of tensor products over non-commutative rings.)

Remark 4.4. Let us spell out what this de�nition means. Let t1, ..., tn be a left transversal for H in
G. That is, such that the decomposition of G into left cosets of H is given by G = t1H t ... t tnH.
Then the elements t1, ..., tn give a basis for C[G] as a right G[H]-module. Consequently, as a C-vector
space, IndGHV decomposes as a direct sum

(4.5) IndGHV =

n⊕
i=1

ti ⊗ V,

where ti ⊗ V = {ti ⊗ v : v ∈ V }. Each of these summands is, as a vector space, isomorphic to V .
To describe the G-action with respect to this decomposition, take g ∈ G and �x i between 1 and n.
Then there is a unique j such that gtiH = tjH. Then t−1

j gti ∈ H and for any v ∈ V we have

(4.6) g(ti ⊗ v) = gti ⊗ v = tj(t
−1
j gti)⊗ v = tj ⊗ (t−1

j gti)v.

Here the point is that it is elements of H, rather than elements of G, that we can move through
the tensor product (it is only H that acts on V ). We remark that, if one wants to avoid tensor
products over non-commutative rings, then (4.5) and (4.6) together can be used as the de�nition of
the representation IndGHV .

Example 4.7. Let H be a subgroup of G, and take X to be the set of left cosets of H in G, viewed
as a G-set in the usual way (i.e. via left-multiplication). Writing 1H for the trivial representation
of H, we have IndGH1H

∼= CX. Indeed, this follows immediately from (4.5) and (4.6), along with the
de�nition of the permutation representation CX.

We now compute the character of an induced representation.

Lemma 4.8. Let H be a subgroup of G and let V be an H-representation. Then for any g ∈ G we
have

χIndGHV
(g) =

1

|H|
∑
x∈G

χ◦V (x−1gx), where χ◦V (g) =

{
χV (g) g ∈ H,
0 otherwise.

Proof. Take g ∈ G and �x t1, ..., tn as in Remark 4.4. Consider the matrix of g on IndGHV with
respect to some basis respecting the direct sum decomposition (4.5). Since g maps ti⊗ V to tj ⊗ V ,
where j is such that gtiH = tjH, the non-zero diagonal entries correspond to i for which gtiH = tiH.

That is, such that t−1
i gti ∈ H. For such an i, from (4.6) we see that the action of g on ti ⊗ V is

given by
g(ti ⊗ v) = ti ⊗ (t−1

i gti)v.
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That is, g acts on ti ⊗ V how t−1
i gti acts on V . We thus have

χIndGHV
(g) =

n∑
i=1

χ◦V (t−1
i gti).

To see that this agrees with the formula in the statement, take some x ∈ G and write x = tih for
some h ∈ H and i between 1 and n. Then x−1gx = h−1(t−1

i gti)h. Since χV is a class function on

H, we �nd χ◦V (x−1gx) = χ◦V (t−1
i gti). Thus the function x 7→ χ◦V (x−1gx) is constant on left cosets

of H in G, from which the result follows readily. �

Motivated by Lemma 4.8, we make the following de�nition.

De�nition 4.9. Let H be a subgroup of G, and let ψ : H → C be a class function. Then we de�ne
the induced class function IndGHψ : G→ C by the formula

IndGHψ(g) =
1

|H|
∑
x∈G

ψ◦(x−1gx), where ψ◦(g) =

{
ψ(g) g ∈ H,
0 otherwise.

Remark 4.10. One checks readily that IndGHψ is again a class function, so induction gives a map

IndGH : C(H) −→ C(G).

By Lemma 4.8, this function takes characters to characters.

The operations of induction and restriction are related by the following important result.

Theorem 4.11 (Frobenius reciprocity). Let H be a subgroup of G. Let ψ : G→ C and φ : H → C
be class functions on G and H respectively. Then we have

(4.12)
〈
IndGHφ, ψ

〉
=
〈
φ, resGHψ

〉
.

That is, the maps resGH : C(G) → C(H) and IndGH : C(H) → C(G) are adjoint with respect to the
inner products of De�nition 2.10.

Proof. We give two proofs of this: one conceptual and one by direct computation.
For the �rst, let V be an H-representation and let W be a G-representation. Then we have (as a

special case of tensor-hom adjunction; see Example 4.29 below) an isomorphism

(4.13) HomG

(
IndGHV,W

) ∼= HomH

(
V,ResGHW

)
.

Indeed, we have a natural map from left to right, sending a G-homomorphism α : C[G]⊗C[H]V →W
to the map v 7→ α(1 ⊗ v). Similarly, we have a natural map from right to left sending an H-
homomorphism β : V → ResGHW to the map g ⊗ v 7→ gβ(v). One checks that these maps are well
de�ned (and G- or H- equivariant as appropriate) and mutally inverse.

Having established the isomorphism (4.13), we can take dimensions and use Theorem 2.8 to give〈
IndGHχV , χW

〉
=
〈
χV , res

G
HχW

〉
.

This establishes (4.12) in the case that φ and ψ are characters. However, since by Corollary 2.12 the
irreducible characters form a basis for the space of class functions, this su�ces to prove the result.
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For the second proof, we simply compute〈
IndGHφ, ψ

〉
=

1

|G||H|
∑

(x,g)∈G×G

φ◦(x−1gx)ψ(g)

=
1

|G||H|
∑

(x,y)∈G×G

φ◦(y)ψ(y)

=
1

|H|
∑
y∈G

φ◦(y)ψ(y)

=
〈
φ,ResGHψ

〉
,

where in the second equality we make the change of variable y = x−1gx and use that ψ is a class
function on G. �

When it comes to actually computing the induction of a character in practice, the following is an
improvement on the formula given in Lemma 4.8. As in Remark 2.20, given g ∈ G, we denote by
CG(g) the centraliser of g in G. We also write CG(g) for the conjugacy class of g.

Lemma 4.14. Let ψ : H → C be a class function, and let g ∈ G. If CG(g) ∩ H = ∅ then

IndGHψ(g) = 0. Otherwise, write CG(g) ∩H =
⊔m
i=1 CH(hi) as a disjoint union of conjugacy classes

of H. Then we have

IndGHψ(g) =
m∑
i=1

|CG(g)|
|CH(hi)|

ψ(hi).

Proof. Consider the formula

IndGHψ(g) =
1

|H|
∑
x∈G

ψ◦(x−1gx).

From the de�nition of ψ◦, the terms contributing non-trivially to the sum have the form ψ(h) for
some h ∈ H which is conjugate to g in G. From this we immediately conclude that IndGHψ(g) = 0
if CG(g) ∩H = ∅. Further, assuming henceforth that CG(g) ∩H 6= ∅, and recalling that ψ is a class
function on H, we see that

IndGHψ(g) =
1

|H|

m∑
i=1

|Xi|ψ(hi),

where Xi = {x ∈ G : x−1gx ∈ CH(hi)}. Noting that the natural map Xi → CH(hi) sending x to
x−1gx is surjective (since elements of CH(hi) are conjugate in G to g by assumption), and has �bres
which are right cosets of CG(g), we conclude that

|Xi| = |CH(hi)| · |CG(g)|.
Since also |H| = |CH(hi)| · |CH(hi)| by the orbit-stabliser theorem, the result follows. �

Example 4.15 (The alternating group A5). In this example we construct the character table of the
alternating group A5. We begin with the partial character table

#ccl 1 15 20 12 12
ccl rep 1 (12)(34) (123) (12345) (13524)
1 1 1 1 1 1
χ1 4 0 1 −1 −1

Here χ1 is obtained by restricting the character of the standard representation of S5 to A5 (cf.
Example 3.22). It remains irreducible, as can be seen by computing 〈χ1, χ1〉.

Next, we compute the symmetric square S2χ1 of χ1. By Lemma 3.21 its character is as follows:
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#ccl 1 15 20 12 12
ccl rep 1 (12)(34) (123) (12345) (13524)
S2χ1 10 2 1 0 0

From this we compute:〈
S2χ1, S

2χ1

〉
= 3,

〈
S2χ1,1

〉
= 1 and

〈
S2χ1, χ1

〉
= 1.

From this we deduce that S2χ1 = 1+χ1 +χ2 for some irreducible character χ2 (this is the restriction
to A5 of the character of S5 constructed in Exercise 3.3 (c)). Adding this to the character table
gives:

#ccl 1 15 20 12 12
ccl rep 1 (12)(34) (123) (12345) (13524)
1 1 1 1 1 1
χ1 4 0 1 −1 −1
χ2 5 1 −1 0 0

Now take H to be the subgroup of A5 generated by (12345), so that H ∼= Z/5Z. Take ψ to be
the linear character of H sending the generator (12345) to ζ = exp(2πi/5) (cf. Section 3.2). Its
character is

#ccl 1 1 1 1 1
ccl rep 1 (12345) (13524) (14253) (15432)
ψ 1 ζ ζ2 ζ3 ζ4

We now compute the character IndA5
H ψ using Lemma 4.14. First note that CA5(g) ∩H = ∅ unless

g = 1 or g is a 5-cycle. Thus IndA5
H ψ(g) = 0 for g either a double transposition or a 3-cycle. Further,

Lemma 4.14 immediately gives

IndA5
H ψ(1) = [A5 : H] = 12.

Now take g = (12345). The intersection of H with the A5-conjugacy class of g is the set

{(12345), (12345)−1 = (15432)}.
Since H is abelian this is a union of 2 H-conjugacy classes. Further, the centraliser of (12345) in
A5 has order |A5|/|CA5(g)| = 5, whilst the centralisers of both (12345) and (15432) in H have order
5 (H is abelian). Thus from Lemma 4.14 we �nd

IndA5
H ψ

(
(12345)

)
=

5

5
· ψ
(
(12345)

)
+

5

5
· ψ
(
(12345)−1

)
= ζ + ζ−1 = 2 cos(2π/5) =

−1 +
√

5

2
.

A similar computation gives

IndA5
H ψ

(
(13524)

)
=
−1−

√
5

2
.

Thus the character of IndA5
H ψ is given as follows:

#ccl 1 15 20 12 12
ccl rep 1 (12)(34) (123) (12345) (13524)

IndA5
H ψ 12 0 0 1

2(−1 +
√

5) 1
2(−1−

√
5)

Either computing directly or better (at least for the �rst 2 inner products) using Theorem 4.11, we
�nd 〈

IndA5
H ψ, χ1

〉
= 1,

〈
IndA5

H ψ, χ2

〉
= 1 and

〈
IndA5

H ψ, IndA5
H ψ

〉
= 3.

We thus conclude that IndA5
H ψ = χ1 +χ2 +χ3 for some irreducible character χ3. Adding this to the

character table, and completing the �nal row by orthogonality in the usual way, we �nally obtain
the complete character table of A5:
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#ccl 1 15 20 12 12
ccl rep 1 (12)(34) (123) (12345) (13524)
1 1 1 1 1 1
χ1 4 0 1 −1 −1
χ2 5 1 −1 0 0

χ3 3 −1 0 1
2(1 +

√
5) 1

2(1−
√

5)

χ4 3 −1 0 1
2(1−

√
5) 1

2(1 +
√

5)

Using Exercise 3.1 we can conclude immediately from the character table that A5 is simple.

Remark 4.16. Rather than deducing the character of χ4 by orthogonality, it is a general fact that
the Galois conjugates of irreducible characters are again irreducible characters. This allows us to
immediately write down χ4 from χ3. We remark also that a 3-dimensional irreducible representation
of A5 can be constructed geometrically by thinking of A5 as the group of orientation preserving
symmetries of the regular icosahedron; see [EGH+11, Section 4.8] for more details.

4.1. Exercises.

4.1. Let p be a prime and consider the modular Heisenberg group

Hp =


 1 a b

0 1 c
0 0 1

 : a, b, c ∈ Fp

 ,

which has order p3 (the group operation is multiplication of matrices). In this exercise we
will determine the irreducible characters of Hp. To ease notation we will write

[a, b, c] =

 1 a b
0 1 c
0 0 1

 .

(a) Show that we have

[α, β, γ] · [a, b, c] · [α, β, γ]−1 = [a, b+ αc− aγ, c].
Deduce that Hp has p conjugacy classes of size 1, and p2− 1 conjugacy classes of size p.

(b) Show that the commutator of [a, b, c] and [α, β, γ] satis�es[
[a, b, c], [α, β, γ]

]
= [0, aγ − αc, 0],

and deduce that the commutator subgroup of Hp is the subgroup of elements of the
form [0, b, 0] for b ∈ Fp.

(c) Using (b), write down p2 linear characters of Hp.
(d) Let L be the subgroup of elements of the form [a, b, 0] for a, b ∈ Fp. Given a non-trivial

homomorphism η : Fp → C×, de�ne the linear character η̃ of L by setting

η̃([a, b, 0]) = η(b).

For each a, b, c ∈ Fp, compute(
Ind

Hp
L η̃

)
([a, b, c]),

and show that Ind
Hp
L η̃ is an irreducible character of Hp.

(e) Deduce that Hp has p2 linear characters, and p − 1 irreducible characters of degree p.
Why does this account for all irreducible characters of Hp?

(f) What, if anything, changes when Fp is replaced by the �nite �eld Fq for some prime
power q = pn, n ≥ 2?
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4.2 Compute the decomposition into irreducibles of all representations of A5 induced from irre-
ducible representations of the subgroups:
(a) {1, (12)(34)},
(b) {1, (123), (132)},
(c) A4 (embedded as the subgroup of elements �xing 5, say)

4.3 The following forms part of a set of results referred to as Cli�ord theory.
Let G be a �nite group and let N be a normal subgroup of G.

(a) Let g ∈ G and let ψ : N → C be a class function for N . Show that the function
gψ : N → C de�ned by

gψ(n) = ψ(g−1ng)

is again a class function of N . Show that G acts on C(N) via ψ 7→ gψ and that this
action sends irreducible characters to irreducible characters.

(b) Let V be a representation of G a�ording character χ, and let W be an irreducible
constituent of resGNV a�ording character ψ. For g ∈ G, show that gW ⊆ V is stable
under the action of N and a�ords character gψ.

(c) Write resGNχ =
∑n

i=1miψi as a sum of irreducible characters of N , where each mi > 0
and where ψ1 = ψ. Show that G acts transitively on the set ψ1, ..., ψn (the action being
the one de�ned in (a)), and that m1 = m2 = ... = mn. Hint: for transitivity, consider
the subspace

∑
g∈G gW of V .

(d) Compute the restriction to A5 of the irreducible representation of S5 of degree 6, and
compare with the above results.

Appendix to Section 4: tensor products over non-commutative rings. Let R be a ring
(associative with unit, but crucially not assumed commutative).

De�nition 4.17. Let M be a right R-module and N a left R-module. The tensor product of M
and N over R, denoted M ⊗R N , is the quotient of the free abelian group with basis

{m⊗ n : m ∈M,n ∈ N}

(the elements m⊗ n viewed as formal symbols) by the relations

(m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n,

m⊗ (n1 + n2) = m⊗ n1 +m⊗ n2,

mr ⊗ n = m⊗ rn
for all m,m1,m2 ∈M , n, n1, n2 ∈ N and r ∈ R.

Caution 4.18. The tensor product M ⊗R N has no natural structure of (either left or right) R-
module, it is simply an abelian group.

4.1.1. Universal property of tensor product. As with the tensor product over commutative rings, this
construction satis�es a natural universal property.

De�nition 4.19. Let A be an abelian group. We say that a Z-bilinear map P : M × N → A is
R-balanced if, for all m ∈M , n ∈ N and r ∈ R, we have

P (mr, n) = P (m, rn).

The tensor product M ⊗R N is an abelian group, equipped with an R-balanced map

⊗ : M ×N −→M ⊗R N.
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In our construction, this map is given by (m,n) 7→ m⊗n. It satis�es the following universal property:
any R-balanced map P from M ×N to an abelian group A factors uniquely as

M ×N ⊗ //

P

&&

M ⊗R N

∃!P̃
��
A

for a homomorphism P̃ of abelian groups.

4.1.2. Tensor-hom adjunction. In spite of Caution 4.18, there is a natural setting in which M ⊗RN
inherits a module structure.

De�nition 4.20. Suppose we are given another (unital, associative) ring S. We say that an abelian
group M is an (S,R)-bimodule if:

• M is a left S-module and a right R-module,
• for all r ∈ R, s ∈ S and m ∈M we have

(s ·m) · r = s · (m · r).

In the case thatM is an (S,R)-bimodule, the tensor productM⊗RN is naturally a left S-module
via, for s ∈ S, m ∈M and n ∈ N ,

s · (m⊗ n) = (sm)⊗ n.

In this setting we can view tensor product with M as an additive functor

M ⊗R − : R-mod −→ S-mod,

where R-mod (resp. S-mod) denotes the category of left R-modules (resp. left S-modules).
Still assuming that M is an (S,R)-bimodule, there is also a natural functor in the opposite

direction. Namely, given a left S-module N , the abelian group HomS(M,N) has the structure of a
left R-module by setting, for r ∈ R, m ∈M and ϕ ∈ HomS(M,N),

(r · ϕ)(m) = ϕ(mr).

In this way we obtain an additive functor

HomS(M,−) : S-mod −→ R-mod.

Proposition 4.21 (Tensor-hom adjunction). The functor M ⊗R − is left adjoint to HomS(M,−).
In particular, for any left R-module X and left S-module Y , we have an isomorphism of abelian
groups

(4.22) HomS(M ⊗R X,Y ) ∼= HomR

(
X,HomS(M,Y )

)
.

Proof. Omitted, at least for now. �

Remark 4.23. The isomorphism (4.22) is induced by the map

HomS(M ⊗R X,Y ) −→ HomR

(
X,HomS(M,Y )

)
taking ϕ : M ⊗R X → Y to the homomorphism X → HomS(M,Y ) de�ned by

x 7−→
(
m 7→ ϕ(m⊗ x)

)
.
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4.1.3. Extension and restriction of scalars. Suppose we have rings R and S as above, along with a
homomorphism of rings

ϕ : R −→ S.

Via ϕ we can view S as an (S,R)-bimodule, the right R-module structure on S being de�ned by
setting, for s ∈ S and r ∈ R,

s · r = sϕ(r).

De�nition 4.24 (Extension of scalars). We refer to the functor

S ⊗R − : R-mod −→ S-mod

as extension of scalars from R to S.

The is a more basic functor in the opposite direction.

De�nition 4.25 (Restriction of scalars). Given a left S-moduleN , we can viewN as a left R-module
via

r ·m = ϕ(r)m.

We denote by RN the left R-module obtained this way. We refer to the functor

R(−) : S-mod −→ R-mod

as restriction of scalars from S to R.

The following is an instance of Tensor-hom adjunction.

Proposition 4.26. Extension of scalars is left-adjoint to restriction of scalars. In particular, for
any left R-module X and left S-module Y , we have an isomorphism of abelian groups

(4.27) HomS(S ⊗R X,Y ) ∼= HomR(X,RY ).

Proof. For each left S-module Y , we have an isomorphism of left R-modules

HomS(S, Y )
∼−→ RY,

given by evaluating homomorphisms at the identity element 1 ∈ S. Varying Y this induces a natural
isomorphism of functors

HomS(S,−)
∼−→ R(−).

The claimed adjunction now follows from Proposition 4.21. �

Remark 4.28. The isomorphism (4.27) is induced by the map

HomS(S ⊗R X,Y ) −→ HomR(X,RY )

taking an S-module homomorphism ϕ : S⊗RX → Y to the homomorphism X → Y sending x ∈ X
to ϕ(1⊗x). The inverse map takes an R-module homomorphism ψ : X → Y to the homomorphism
S ⊗R X → Y sending s⊗ x to sψ(x).

Example 4.29. Let G and H be �nite groups, and let ϕ : C[H]→ C[G] be the ring homomorphism
induced by the inclusion of H into G. Then given an H-representation V , we obtain IndGHV as the
extension of scalars

IndGHV = C[G]⊗C[H] V.

Similarly, given a G-representation W , we obtain ResGHW as the restriction of scalars

ResGHW = C[H]W.

The adjunction of Proposition 4.26 then gives the Frobenius reciprocity isomorphism

HomG

(
IndGHV,W

) ∼= HomH

(
V,ResGHW

)
.
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5. Integrality properties of characters

5.1. Idempotents in the group ring. By Theorem 1.14 (and the surrounding discussion), we
have an isomorphism of C-algebras

(5.1) C[G] ∼=
∏

χ irred.

Mdχ(C),

where dχ = χ(1) is the degree of χ. Under this identi�cation, the unique (up to isomorphism)

representation a�ording some irreducible charcter χ corresponds to Cdχ with its usual action of
Mdχ(C), given by left multiplication on column vectors. We write eχ for the element of C[G]
corresponding to the identity matrix in the factor Mdχ(C). Note that we have

(5.2) e2
χ = eχ,

∑
χ irred.

eχ = 1, and eχ · eχ′ = 0 for χ 6= χ′.

Note also that each eχ is central in C[G]; we refer to the eχ as central idempotents. The collection
{eχ}χ irred. gives a C-basis for Z(C[G]).

To describe the eχ intrinsically, for each irreducible character χ, let Vχ be a representation a�ording
χ, and let ρχ : G → GL(Vχ) denote the corresponding homomorphism. Extending C-linearly, we
obtain an homomorphism of C-algebras

C[G] −→ EndC(Vχ)

which agrees with ρχ for each g ∈ G; by an abuse of notation we call this map ρχ also. Then

(5.3) ρχ(eχ′) =

{
idVχ χ = χ′,

0 otherwise.

Considering the isomorphism (5.1), we see that this property determines eχ′ uniquely.

Proposition 5.4. For each irreducible character χ of G, we have

(5.5) eχ =
χ(1)

|G|
∑
g∈G

χ(g) · g.

Proof. Given any z ∈ Z(C[G]), if we write z =
∑

χ irred. λχeχ, then we conclude from (5.3) that

λχ =
1

χ(1)
trace(ρχ(z)).

Now �x some irreducible character χ, and write zχ =
∑

g∈G χ(g) · g. Since the coe�cients in the

sum de�ning zχ are constant on conjugacy classes, we see that zχ is central in C[G] (see the proof of
Corollary 1.16). By the computation above, when we write zχ in the basis of central idempotents,
the coe�cient of some eχ′ is given by

1

χ′(1)
trace(ρχ′(zχ)) =

1

χ′(1)

∑
g∈G

χ(g)χ′(g) =

{
|G|
χ(1) χ = χ′,

0 otherwise,

the second equality following from Theorem 2.8. �

Remark 5.6. As a consequence of Proposition 5.4, with the eχ given explicitly as in (5.5), C[G] can
be written as a direct product

C[G] =
∏

χ irred.

C[G]eχ,
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where each C[G]eχ is a matrix algebra over C of dimension χ(1)2 (the multiplicative identity in
C[G]eχ is eχ). Note also that for each irreducible character χ, the map ωχ de�ned by

ωχ(z) = 1
χ(1)trace(ρχ(z))

gives a C-algebra homomorphism Z(C[G])→ C, and that together these maps give an isomorphism

Z(C[G])
∼−→

∏
χ irred.

C.

For each conjugacy class C ⊆ G, let SC =
∑

g∈C g denote the corresponding class sum; we saw in

the proof of Corollary 1.16 that the class sums give a basis for Z(C[G]). The formula (5.5) can be
viewed as describing the expansion of the central idempotents eχ with respect to the basis of class
sums. In the reverse direction we have:

Corollary 5.7. Let C ⊆ G be a conjugacy class. Then we have

SC =
∑

χ irred.

χ(C)|C|
χ(1)

eχ,

where χ(C) denotes the common value of χ on the elements of C.

Proof. One can prove this directly by substituting in the formula (5.5) for eχ and using column
orthogonality (Theorem 2.18). Alternatively, as in the proof of Proposition 5.4, when we expand SC
with respect to the basis of central idempotents, the coe�cient of eχ is given by

1

χ(1)
trace(ρχ(SC)) =

1

χ(1)

∑
g∈C

χ(g) =
χ(C)|C|
χ(1)

,

as desired. �

5.2. Integrality properties. Recall that z ∈ C is called an algebraic integer if it is a root of some
monic polynomial with integer coe�cients.

Example 5.8. Let z be a primitive n-th root of unity for some n ≥ 1. Then z satis�es the polynomial
P (x) = xn − 1. In particular, z is an algebraic integer.

We will assume the following two facts, the proof of which is given in the appendix to this section.
In what follows, we denote by O the subset of algebraic integers in C.

Fact 5.9. The set O is a subring of C. In particular, if a and b are algebraic integers, then so are
a+ b and ab.

Fact 5.10. We have O ∩Q = Z. That is, if z ∈ C is both rational and an algebraic integer, then z
is an honest integer.

Whilst very basic, the following result is important.

Proposition 5.11. Let χ be a character of G, and let g ∈ G. Then χ(g) is an algebraic integer.

Proof. Let V a�ord character χ. As in the proof of Lemma 2.3, since gn is equal to 1 for some
integer n ≥ 1, the same is true of ρV (g), hence ρV (g) is diagonalisable and its eigenvalues are all
roots of unity. Thus χ(g) is a sum of roots of unity, hence an algebraic integer by Fact 5.9 and
Example 5.8. �

Remark 5.12. As a consequence of Proposition 5.11 and Fact 5.10, any rational number appearing
in the character table of G is an integer.
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Example 5.13. In Example 4.15 we saw that z = 1
2(1 +

√
5) appears in the character table of A5.

Despite the presence of the 2 in the denominator, Proposition 5.11 asserts that z is an algebraic
integer. To see this directly, observe that we have

5 = (2z − 1)2 = 4z2 − 4z + 1.

Thus z2 − z − 1 = 0.

Less immediate than Proposition 5.11 is the following integrality statement.

Proposition 5.14. Let C be a conjugacy class of G. Then for any irreducible character χ of G, the
quantity

χ(C)|C|
χ(1)

is an algebraic integer.

Proof. Let SC ∈ Z(C[G]) denote the corresponding class sum, which we view as a C-endomorphism
φC of Z(C[G]) via left multiplication. The matrix of φC with respect to the basis of class sums for
Z(C[G]) is easily seen to have integer entries, hence the characteristic polynomial of φC is monic
with integer entries.3 In particular, all the eigenvalues of φC are algebraic integers. On the other
hand, by Corollary 5.7 and (5.2), the matrix of φC with respect to the basis of central idempotents

is the diagonal matrix with entries χ(C)|C|
χ(1) as χ ranges over the irreducible characters of G. �

Proposition 5.14 has the following concrete consequence.

Corollary 5.15. Let χ be an irreducible character of G. Then χ(1) divides |G|.

Proof. By Remark 2.16 we have

|G|
χ(1)

=
1

χ(1)

∑
C ccl.
|C|χ(C)χ(C) =

∑
C ccl.

|C|χ(C)
χ(1)

· χ(C).

Combining Proposition 5.14 and Proposition 5.11 with Fact 5.9, we see that the right hand side of

the above equation is an algebraic integer. Thus |G|χ(1) is simultaneously a rational number and an

algebraic integer. Fact 5.10 then ensures that it is an integer, giving the result. �

Remark 5.16. With a bit more e�ort, one can in fact strengthen the statement of Corollary 5.15
to the assertion that χ(1) divides |G|/|Z(G)|, where Z(G) denotes the centre of G. See [Ser77,
Proposition 17] for a proof. The discussion directly before that result points to further strengthenings
of Corollary 5.15.

Appendix to Section 5: basic properties of algebraic integers. In this appendix we prove
Facts 5.9 and 5.10 concerning properties of algebraic integers.

De�nition 5.17. We say that an element z ∈ C is an algebraic integer if there is some monic
polynomial p(x) ∈ Z[x] for which p(z) = 0.

Lemma 5.18. Let z ∈ Q. Then z is an algebraic integer if and only if z ∈ Z.

Proof. If z ∈ Z then z satis�es the polynomial p(x) = x−z, hence is an algebraic integer. Conversely,
if z is an algebraic integer then there are integers n ≥ 1 and a0, a1, ..., an−1 such that

zn + an−1z
n−1 + ...+ a1z + a0 = 0.

3Our convention is that the characteristic polynomial of an endomorphism φ is the polynomial Pφ(t) = det(t·id−φ).



SMSTC ALGEBRAS AND REPRESENTATION THEORY 29

Write z = p/q in lowest terms, i.e. so that p, q ∈ Z have gcd(p, q) = 1. Without loss of generality,
suppose also that q > 0. Then we have

pn = −an−1p
n−1q − ...− a1pq

n−1 − a0q
n.

Any prime dividing q would divide every term on the right hand side, hence divide p also, a contra-
diction. Thus we must have q = 1, hence z ∈ Z. �

Our next aim is to show that the collection of all algebraic integers forms a subring of C. For
this, the following characterisation of algebraic integers is useful.

Lemma 5.19. Let α ∈ C. Then α is an algebraic integer if and only if the subring

Z[α] = Z + Zα+ Zα2 + ...

of C is �nitely generated as a Z-module.

Proof. If α is an algebraic integer then, as above, there are integers n ≥ 1 and a0, a1, ..., an−1 such
that

αn + an−1α
n−1 + ...+ a1α+ a0 = 0.

This allows us to express

αn = −an−1α
n−1 − ...− a1α− a0

as a sum of lower powers of α with integer coe�cients. From this we conclude that Z[α] is generated
by 1, α, ..., αn−1 as a Z-module.

Conversely, suppose that Z[α] is �nitely generated. In particular, since Z is Noetherian, Z[α] is
Noetherian as a Z-module. Consequently, the ascending chain of submodules

Z ⊆ Z + Zα ⊆ Z + Zα+ Zα2 ⊆ ...
stabilises. In particular, there is some n ≥ 1 such that αn lies in the submodule generated by
1, α, ..., αn−1. But then we have a relation of the form

αn = an−1α
n−1 + ...+ a1α+ a0,

for some integers a0, ..., an−1. Thus α is an algebraic integer. �

Proposition 5.20. The set O of algebraic integers is a subring of C.

Proof. Let α and β be algebraic integers. It follows from Lemma 5.19 that the ring Z[α] ⊗Z Z[β],
and hence its image Z[α, β] in C, is �nitely generated as a Z-module. In particular, as submodules
of Z[α, β], both Z[αβ] and Z[α− β] are �nitely generated also. Thus by Lemma 5.19, both αβ and
α− β are algebraic integers. �

6. Applications to group theory

In this section we use character theory to prove some `purely group theoretic' results.

6.1. Burnside's paqb theorem. Recall that a �nite group G is called solvable if there is n ≥ 1 and
a chain of subgroups

1 = G0 C G1 C ... C Gn = G,

of G such that Gi is normal in Gi+1 for each i, and such that the successive quotients Gi+1/Gi are
all abelian. Recall also that if N is a normal subgroup of G such that both N and G/N are solvable,
then G is solvable also. That is, any extension of solvable groups is solvable. For a p a prime, the
following standard argument shows that all p-groups are solvable:

Proposition 6.1. Let p be a prime and let G be a �nite p-group. Then G is solvable.
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Proof. Induction on |G| = pn. Clearly the result holds if n = 0. Suppose that n > 1 and write

G =

m⊔
i=1

CG(gi)

as a disjoint union of conjugacy classes, where without loss of generality we take g1 = 1. Since the
order of each conjugacy class divides the order of G (by the orbit-stabliser theorem), each conjugacy
class has order a power of p. Reducing the identity

pn = |G| = 1 +
m∑
i=2

|CG(gi)|

modulo p, we see that there must be a non-identity element of G whose conjugacy class has size
1. In particular, the centre Z(G) of G is non-trivial. If Z(G) = G then G is abelian and we are
done, so suppose otherwise. Then Z(G) is a non-trivial normal subgroup of G and both Z(G) and
G/Z(G) are p-groups of size strictly smaller than |G|. By induction, both Z(G) and G/Z(G) are
solvable, hence so is G. �

Using character theory, we will show that, in fact, any group whose order has at most 2 prime
factors is solvable. This is best possible since |A5| = 60 = 22 · 3 · 5 is non-abelian simple.

The following lemma needs a small amount of algebraic number theory for its proof. Given an
algebraic integer α, the minimal polynomial of α, denoted Pα(t), is the monic polynomial of smallest
degree with rational coe�cients that has α as a root. If Q(t) ∈ Q[t] is another polynomial having α
as a root, then Pα(t) divides Q(t). The conjugates of α are the roots of Pα(t), and their product is
the norm of α. It follows from Gauss's lemma that Pα(t) has integer coe�cients, hence the norm of
α (being ± the constant coe�cient of Pα(t)) is an integer. Given another algebraic integer β, one
can show that each conjugate of α+ β has the form α′ + β′ for some conjugate α′ of α and β′ of β.
When I get time I'll add a proof of these facts to the appendix to Section 5.

Lemma 6.2. Let G be a �nite group and χ an irreducible character of G. Suppose that CG(g) is a
conjugacy class such that χ(1) and |CG(g)| are coprime. Then |χ(g)| ∈ {0, χ(1)}.
Proof. By assumption there are integers a and b such that

aχ(1) + b|CG(g)| = 1.

But then
χ(g)

χ(1)
=
χ(g)

χ(1)

(
aχ(1) + b|CG(g)|

)
= aχ(g) + b · χ(g)|CG(g)|

χ(1)

is an algebraic integer by Proposition 5.14. On the other hand, since χ(g) is a sum of χ(1)-many

roots of unity, we have |χ(g)| ≤ χ(1). Since the same holds for each conjugate of χ(g)
χ(1) , we see that

the norm of χ(g)
χ(1) is equal to either 0 or 1. In the latter case we must have |χ(g)| = χ(1), and in the

former we have χ(1) = 0. �

Proposition 6.3. Let p be a prime, let G be a �nite group, and let g 6= 1 be an element of G such
that CG(g) has order a non-trivial power of p. Then G has a non-trivial normal subgroup.

Proof. By Theorem 2.18 (column orthogonality) we have

(6.4) 0 =
∑

χ irred.

χ(1)χ(g) = 1 +
∑

χ irred.
χ 6=1

χ(1)χ(g).

Claim: If |χ(g)| = χ(1) for some irreducible character χ 6= 1, then G has a non-trivial normal
subgroup.
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Proof of claim: Let V a�ord character χ, and let ρ : G → GL(V ) be the corresponding
homomorphism. Since χ is non-trivial, ker(ρ) 6= G. If ker(ρ) 6= 1 then ker(ρ) is a non-trivial normal
subgroup and we are done. So assume that ρ is injective.

Suppose now that |χ(g)| = χ(1). Since χ(g) is a sum of χ(1)-many roots of unity, we see that
each of these roots of unity must agree (n elements of the unit circle in the complex plane can only
sum to something of absolute vaue n if they are all equal). Thus ρ(g) is a scalar. In particular, g is
a non-trivial element of the kernel of the composition

ρ̃ : G −→ GL(Vχ) −→ GL(Vχ)/Z(GL(Vχ)).

Now ker(ρ̃) 6= G, since otherwise ρ would given an injection of G into Z(GL(Vχ)), hence G would
be abelian. But this is impossible since we have assumed that G has a conjugacy class of order a
positive power of p. Thus ker(ρ̃) is a non-trivial normal subgroup of G. �

By the claim, can assume |χ(g)| 6= χ(1) for all irreducible characters χ 6= 1. Then by Lemma 6.2
and our assumption on |CG(g)| we see that, for every irreducible character χ 6= 1, either χ(g) = 0 or
p divides χ(1). Thus from (6.4) we have

−1

p
=

∑
χ irred.

χ 6=1, p|χ(1)

(
χ(1)

p

)
· χ(g).

But this is a contradiction since the right hand side of this equation is an algebraic integer, whilst
the left hand side is not. �

Theorem 6.5 (Burnside's paqb theorem). Let p and q be distinct primes, and let a and b be non-
negative integers. Suppose that G is a �nite group with |G| = paqb. Then G is solvable.

Proof. Induction on |G|. If |G| = 1 we are done. Moreover, if either a = 0 or b = 0 then the result
follows from Proposition 6.1. So assume that a > 0 and b > 0. Let Q be a Sylow q-subgroup of
G. Then (as in the proof of Proposition 6.1) the centre of Q is non-trivial; �x g 6= 1 in Z(Q). The
centraliser of g in G contains Q, so since

|CG(g)| = |G|
|CG(g)|

we see that |CG(g)| is a power of p. If |CG(g)| is a non-trivial power of p then G has a non-trivial
normal subgroup by Proposition 6.3. On the other hand, if |CG(g)| = 1 then either G is abelian
(and we are done) or Z(G) is a non-trivial normal subgroup of G. Thus we may suppose that G has
some non-trivial normal subgroup N . But then the orders of N and G/N are divisible only by p
and q, and are strictly less that |G|. By induction both N and G/N are solvable, hence so is G. �

6.2. Exercises.

6.1. (a) Let χ be an irreducible character of G, let V be a representation a�ording character χ,
and let ρ : G→ GL(V ) be the corresponding homomorphism. Show that if |χ(g)| = χ(1)
for some g ∈ G then ρ(g) is a scalar.

(b) Show that the set

Z(χ) = {g ∈ G : |χ(g)| = χ(1)}

is a normal subgroup of G.
(c) Show that we have

Z(G) =
⋂

χ irred.

Z(χ).



32 SMSTC ALGEBRAS AND REPRESENTATION THEORY

6.2 Let G be a �nite group and let V be a faithful representation of G. Show that every
irreducible representation of G occurs as a constituent of V ⊗n for some n ≥ 1.

6.3 Let k be a �eld, let p(x) ∈ k[x] be a polynomial, and let A be the k-algebra k[x]/(p(x)).

(a) Show that 1, x, ..., xdeg(p(x))−1 gives a basis for A as a k-vector space.
(b) By considering the action of x on A by left multiplication, write down a polynomial

with coe�cients in k whose characteristic polynomial is equal to p(x).
(c) Show that α ∈ C is an algebraic integer if and only if it is an eigenvalue of a matrix

with integer coe�cients.
(d) By using (c) and considering tensor products of suitable matrices, show that if α and β

are algebraic integers then so are α ± β and αβ. This gives another proof that the set
of all algebraic integers is a subring of C.

References

[EGH+11] P. I. Etingof, O. Golberg, S. Hensel, T. Liu, A. Schwendner, D. Vaintrob and E. Yudovina, Introduction
to Representation Theory, American Mathematical Soc., 2011.

[Isa94] I.M. Isaacs, Character theory of �nite groups, Dover Publications, 1994.
[Ser77] J.-P. Serre, Linear representations of �nite groups, Graduate Texts in Mathematics, vol. 42, Springer-

Verlag, 1977.

School of Mathematics and Statistics, University of Glasgow, University Place, Glasgow, G12

8QQ.

Email address: adam.morgan@glasgow.ac.uk


	1. Definitions, examples, Maschke's theorem
	2. Characters and orthogonality
	3. Methods for constructing characters
	4. Induction, restriction, Frobenius reciprocity
	5. Integrality properties of characters
	6. Applications to group theory
	References

