
LOCAL ARITHMETIC OF CURVES AND JACOBIANS

1. Lecture 1: Curves and Jacobians

Let k be a �eld. When talking about geometric objects over k, following [Poo17], we
make the conventions that:

• An algebraic variety over k is a �nite type, separated k-scheme,
• A curve over k is an algebraic variety all of whose irreducible components have
dimension 1,
• An algebraic variety is said to be nice if it's smooth, projective and geometrically
integral.

For nice varieties line bundles and linear equivalence classes of divisors coincide, and
we will pass between the two without comment.
In this course we will predominantly be interested in the arithmetic of nice curves

and abelian varieties, over �nite extensions of Qp for a prime p, though much of the
motivation comes from (the aim of) understanding these objects over number �elds.

1.1. Examples of nice curves. We begin by reviewing the curves which will form
our basic examples throughout the course.

Example 1.1 (Projective line). The most basic example is the projective line

P1
k = Proj (k[x, y]) .

It has genus 0.

Example 1.2 (Elliptic curves). An elliptic curve is a genus 1 curve with a speci�ed
k-point O. If we assume char(k) 6= 2, 3, then any elliptic curve E has a Weierstrass
equation of the shape

E : y2 = x3 + ax+ b, a, b ∈ k
such that the discriminant ∆E = −16(4a3 + 27b2) is 6= 0 (this is equivalent to the
equation being smooth). Strictly speaking this equation de�nes an a�ne curve, and we
should instead consider the projective curve

{y2z − x3 − axz2 − bz3 = 0} ⊆ P2
k

which contains an additional point at in�nity (which we can force to correspond to the
speci�ed point O).

Example 1.3 (Hyperelliptic curves). A hyperelliptic curve is a nice curve C of genus
at least 2, equipped with a degree 2 (�nite separable) morphism to P1

k. Assuming
char(k) 6= 2, C can be de�ned by an equation of the shape

C : y2 = f(x)

1
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where f(x) is a squarefree polynomial and the morphism is given by projecting onto the
x-coordinate. If deg(f) ∈ {2g + 1, 2g + 2} then C has genus g (use Riemann�Hurwitz
for the map to P1). Again, as with the previous example, this is a smooth a�ne curve.
The associated nice curve consists of the two a�ne curves

U1 : y2 = f(x)

and
U2 : z2 = w2g+2f(1/w)

glued over {x 6= 0} and {w 6= 0} along the isomorphism x = 1/w and y = z/wg+1. We
call the points on U2 \ U1 the points at in�nity. There are two such points (possibly
de�ned only over a quadratic extension of k) if deg(f) is even, and one point if deg(f)
is odd.

Remark 1.4. If k = k̄ then the examples above cover all curves of genus 0,1 and 2.
To cover genus 3 we additionally need to include smooth plane quartics, i.e. smooth
curves de�ned by the vanishing of a degree 4 homogeneous polynomial in 3 variables.
See e.g. [Har77, Chapter IV], especially the discussion surrounding Remark 5.5.1, for
a discussion of the classi�cation of curves of small genus.

1.2. Abelian varieties. Milne's two articles in [CS86] are a good reference for the
material in the remainder of this lecture.
Let E/k be an elliptic curve, speci�ed point O ∈ E(k). Then the set E(k) of k-points

of E has a natural (abelian) group structure with identity O, which can be seen in the
following two ways:

• Pick a Weierstrass equation for E with O the point at in�nity. Then the group
structure on E(k) is described by the chord�tangent process

• More abstractly, one shows via Riemann�Roch that the map

P 7→ (P )− (O) ∈ Div0(E/k)/lin. eq. = Pic0(E/k)

is a bijection from E(k) to Pic0(E/k) with O mapping to 0. We can then pull
back the group structure on Pic0(E/k) to E(k).

These two ways are equivalent and turn out to give E the structure of an abelian
variety.
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De�nition 1.5. An abelian variety over k is a nice group variety (i.e. a nice variety
equipped with a group structure where the group operations are given by morphisms).

Remark 1.6. We have:

• The group structure is automatically abelian (this follows from projectivity).
• Any proper, connected, geometrically reduced group variety is in fact automat-
ically smooth and projective, whence an abelian variety.
• All one dimensional abelian varieties are elliptic curves (and, of course, con-
versely).
• Over C, any abelian variety of dimension g is (as a complex Lie group) isomor-
phic to Cg/Λ for some lattice Z2g ∼= Λ ⊆ Cg.

1.3. Torsion points on abelian varieties. Lots of current work in number theory is
concerned with understanding as well as possible the group of rational points of abelian
varieties over �elds of arithmetic interest (e.g. number �elds and their completions).
Particularly accessible is the subgroup consisting of points of �nite order. The following
describes what the torsion points on an abelian variety look like over an algebraically
closed �eld. Over C this follows from the last bullet point of the remark above.

Theorem 1.7. Let k be a �eld and A/k an abelian variety of dimension g. Then for
each n ≥ 1 coprime to the characteristic of k we have

A(k̄)[n] ∼= (Z/nZ)2g.

It's often helpful to put all the torsion points (or all prime power torsion points for
a �xed prime) together into an object called the Tate module.

De�nition 1.8 (Tate module). Let k be a �eld, A/k an abelian variety, and l a prime
number di�erent from the characteristic of k. We de�ne the l-adic Tate module Tl(A)
of A to be the inverse limit

Tl(A) = lim
←
A(k̄)[ln].

As an abelian group this is abstractly isomoprhic to Z2g
l .

Remark 1.9. For n coprime to the characteristic of k, it turns out that all n-torsion
points are contained in A(ksep). In particular, the absolute Galois group Gk of k acts
naturally on these points. In this way we get a Zl-linear action of Gk on the l-adic Tate
module Tl(A), hence a Ql-linear action on

Vl(A) = Tl(A)⊗Zl
Ql.

We refer to this as the l-adic Galois representation associated to A.

1.4. Abelian varieties over number �elds. For this subsection we work over a num-
ber �eld K. Let A/K be an abelian variety. The �rst starting point for understanding
the group A(K) is the Mordell�Weil theorem.

Theorem 1.10 (Mordell�Weil theorem). Let K be a number �eld and A/K an abelian
variety. Then A(K) is a �nitely generated abelian group. Thus

A(K) ∼= A(K)tors ⊕ Zr
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where A(K)tors is a �nite abelian group and r ≥ 0 an integer. We call this integer r the
rank of A/K, denoted rk(A/K).

The rank of an abelian variety is one of its most important invariants. It is, con-
jecturally, related via the Birch and Swinnerton�Dyer conjecture (see Maistret's course
for more on this) to another important invariant: the L-function L(A/K, s).

De�nition 1.11 (The L-function of an abelian variety). Let A/K be an abelian variety
of dimension g. For each nonarchimedean place v of K and prime l with v - l, we de�ne
the local L-polynomial

Lv(A, T ) = det
(
1− Frob−1

v T |(Vl(A)∨)Iv
)

where here Iv denotes the inertia group at v, Frobv is the (arithmetic) Frobenius at v,
and Vl(A)∨ is the dual of Vl(A).
It's a general fact (which follows from the Weil conjectures and the existence of the

Néron model) that Lv(A, T ) is a polynomial with integer coe�cients and is independent
of the choice of l. Writing qv for the size of the residue �eld at v, one de�nes the L-
function of A/k to be the function of a complex variable s given by

L(A/K, s) =
∏

v-∞ place of k

Lv(A, q
−s
v )−1.

Remark 1.12. The L-function of any abelian variety can be shown to converge for
Re(s) > 3/2 and conjecturally has analytic continuation to the whole of C satisfying
a functional equation s ↔ 2 − s. This is known for all elliptic curves over Q by work
of Wiles, Taylor�Wiles, and Breuil�Conrad�Diamon�Taylor. More recently there has
been much work towards this conjecture for elliptic curves over more general �elds
(totally real or CM) and for abelian surfaces over totally real �elds. In particular, we
now know analytic continuation for the L-function associated to an elliptic curve over
totally real quadratic and cubic �elds. oreover, we know meromorphic continuation
for the L-function of an elliptic curve over all CM �elds, and for the L-function of an
abelian surface over totally real �elds. See [FLHS15], [DNS19], [ACC+18], [BCGP18]
and the references therein.

Example 1.13. Let E/K be an elliptic curve and v a nonarchimedean place of K of
norm qv. Let Ē/kv be the reduction of a minimal Weierstrass equation at v, where kv
is the residue �eld of v. If E has good reduction at v then

Lv(E, T ) = 1− avT + qvT
2

where av = qv + 1− |Ē(kv)|. For the places of bad reduction of E we have

Lv(E, T ) =


1− T E split mult at v,

1 + T E non-split mult at v,

1 E additive at v.
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1.5. Jacobians. The theory of curves and abelian varieties meets in Jacobians, which
are one of the main sources of examples of abelian varieties.

De�nition 1.14 (Approximate de�nition). Let C be a nice curve of genus g. Then
one can naturally associate to C a g-dimensional abelian variety Jac(C), the Jacobian
of C, such that (as abelian groups) for any �eld extension K/k,

Jac(C)(K) = Pic0 (C/Ksep)Gal(Ksep/K)

functorially.

Remark 1.15. More precisely, it's a theorem that the functor from k-schemes to abelian
groups

T 7→ Pic0 (CTksep )Gal(ksep/k)

is representable by an abelian variety over k. This representing object is the Jacobian
of C.

Remark 1.16. Since P1
k has genus 0 its Jacobian should be zero, which is re�ected in

the isomorphism deg : Pic(P1
k)

∼−→ Z . Moreover, for an elliptic curve E, the Riemann�
Roch argument shows that E is its own Jacobian.

Remark 1.17. Let C be a nice curve of genus ≥ 2 with a k-point O. Then the Riemann�
Roch argument generalises to give a closed immersion C → Jac(C) (induced by P 7→
(P )− (O)) called the Abel�Jacobi map. If k is a number �eld one of the main ways to
understand the set C(k) of rational points on C is to attempt to understand the image
of C(k) inside its Jacobian.

Remark 1.18. Even when the equation de�ning a curve is quite simple, the equations
de�ning the Jacobian can be very complicated. For example, Flynn shows in [Fly90]
that the Jacobian of a general genus 2 curve y2 = f(x) where f(x) has degree 6, is given
by the vanishing of 72 quadratic forms in P15

k (over a �eld k with char(k) 6= 2, 3, 5).
Consequently, one of our aims for this course is to describe how to compute certain
invariants of Jacobians by working with the underlying curves.

Remark 1.19. We have a canonical isomorphism

Tl(Jac(C)) ∼= HomZl

(
H1

ét(Ck̄,Zl),Zl
)

compatible with the Galois actions. Thus understanding the Tate module of the Jaco-
bian of C is the same as understanding the �rst étale cohomology group of C.

1.6. The dual abelian variety. One of the main things which distinguishes Jacobians
from general abelian varieties is that they are canonically principally polarised. To
explain what this means we need to introduce the dual of an abelian variety.

De�nition 1.20 (Approximate de�nition). Let A/k be an abelian variety. Then there
is another abelian variety, A∨/k, of the same dimension of A, and such that, for any
extension K/k,

A∨(K) = Pic0 (A/K)
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functorially.1 Again, this can be made precise in a way analagously to Remark 1.15.

Again, the Riemann�Roch argument shows that an elliptic curve is canonically iso-
morphic to its dual. The relavance of the dual abelian variety for arithmetic is that a
lot of natural pairings (the Weil pairing, local duality pairings, the Cassels�Tate pair-
ing,...) naturally take place not between an abelian variety and itself, as is the case for
elliptic curves, but between an abelian variety and its dual. However, abelian varieties
are closely related to their duals via the notion of a polarisation.

De�nition 1.21. Let L be a line bundle on an abelian variety A/k and x ∈ A(k).
Writing τx for the `translation-by-x' morphism, the line bundle

τ ∗xL ⊗ L−1

is algebraically equivalent to zero. This construction gives a map A(k)→ A∨(k),

x 7−→ τ ∗xL ⊗ L−1.

In fact, this can be ramped up to give a homomorphism of abelian varieties

φL : A −→ A∨.

In general, any homomorphism A→ A∨ which arises from an ample line bundle via this
construction after base-extension to k̄ is called a polarisation. A polarisation is called
principal if it's an isomorphism.

Remark 1.22. One can show that all polarisations are isogenies (�nite kernel in this
context). Since all abelian varieties are projective they come endowed with at least
one (very) ample line bundle, and are thus always isogeneous to their duals. This has
a number of consequences for their arithmetic. For example, over a number �eld an
abelian variety has the same rank and L-function as its dual.

Proposition 1.23. Let C/k be a nice curve. Then J = Jac(C/k) is canonically prin-
cipally polarised.

Sketch of proof. We'll �rst do this over k̄. Pick an initial point O ∈ C(k̄). For any n,
we have a morphism (de�ned over k̄) Cn → J induced by

(P1, ..., Pn) 7→
n∑
i=1

(Pi)− n(O).

It turns out that when n = g−1 the image is an e�ective divisor on J , and hence yields
a line bundle Θ on J called the Theta bundle. The resulting polarisation φΘ : J → J∨

can be shown to be principal, and does not, in fact, depend on the choice of initial point
O. Using this latter fact, one can additionally show that the morphism φΘ (although
not Θ in general) is de�ned over k. �

1Here Pic0(A/K) is the subgroup of Pic(A/K) consisting of line bundles algebraically equivalent to
0. We do not need to pass to a larger extension and take galois invariants here since, unlike for curves,
every abelian variety has at least one k-point.
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2. Exercises for lecture 1

2.1. Let k be an algebraically closed �eld of characteristic di�erent from 2, and let
C : y2 = f(x) be a hyperelliptic curve over k of genus g ≥ 2. Suppose that f(x) has
odd degree 2g + 1 and denote by R the set of roots of f(x).

(i) Show that the rami�cation points of the x-coordinate map φ : C → P1 are the
points Pr = (r, 0) for r ∈ R, along with the unique point O at in�nity.

(ii) Show that each of the degree 0 divisors

{(Pr)− (O) | r ∈ R}
are 2-torsion points in the Jacobian of C.

(iii) Show that, for k now not necessarily algebraically closed, as a Gk-module, the
2-torsion subgroup of the Jacobian of C is isomorphic to

F2[R]/Σ

where F2[R] denotes the permuation module on R with F2-coe�cients, and Σ
is the formal sum of the elements of R.

(iv) What is the analagous description in the case where f(x) has even degree?

2.2. Let k be an algebraically closed �eld of characteristic di�erent from 2, and let
C : y2 = f(x) be a hyperelliptic curve over k of genus 2 (so that f has degree 5 or 6).
Denote by ι the hyperelliptic involution sending a point P = (x, y) to (x,−y).

(i) Show that the class of the canonical divisor KC is represented by the divisor
P + ι(P ) for any point P on C (hint: consider the degree 2 map to P1 and use
Riemann�Hurwitz).

(ii) Show that the map sending {P1, P2} to the divisor (P1) + (P2) − (O) − (ι(O))
(for O any point at in�nity) is a surjection from the set of unordered pairs of
points on C, to the set degree 0 divisors on C modulo linear equivalence. Show
that the inverse image of any degree 0 divisor class other than 0 consists of a
unique pair. What is the inverse image of the 0 class? (Note that for a general
(say perfect) �eld k this gives a description of Jac(C)(k̄) as a Gk-set.)

(iii)* How would one go about adding two points {P1, P2} and {Q1, Q2} of Jac(C)
via this identi�cation?
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3. Models of curves and abelian varieties

In order to understand the behaviour of curves and abelian varieties over number
�elds it's natural to �rst try to understand them over completions of number �elds. In
particular the L-function, for example, is de�ned only using the abelian variety over
all completions. Thus we now move from arbitrary �elds to a �xed �nite extension K
of Qp for a prime p (of course, there is also a lot of interesting stu� going on over the
real numbers and the complex numbers, but we will not persue this further). Let OK
denote the ring of integers of K, and k the residue �eld. Our general philosophy is
to study curves and Jacobians over K by reducing, as much as possible, to questions
over the �nite �eld k. This can often reduce questions to a �nite computation, whilst
from a theoretical point of view the Weil conjectures give a huge tool to draw on. The
key method for moving from K to its residue �eld is given by the theory of models.
Roughly, the idea is that one wants to `reduce modulo p' but before one can do this the
equations de�ning the variety in question need to have coe�cients in OK . Of course,
there are many changes of variables over K which achieve this and we need to single
out ones which are particularly useful.

3.1. Motivation: elliptic curves. Let p be a prime taken, for simplicity, not equal
to 2, 3 and let

E/Qp : y2 = x3 + ax+ b

be an elliptic curve. After a change of variable of the form (x, y) 7→ (u2x, u3y) for
u ∈ Q×p we can assume that a, b ∈ Zp and that ordp(∆E) is minimal amongst all such
equations. We call this the minimal Weierstrass equation for E. The reduction modulo
p,

Ē/Fp : y2 = x3 + āx+ b̄,

is well de�ned (up to isomorphism over Fp) and falls into one of three cases:

• Ē/Fp is an elliptic curve. This happens if and only if ordp(∆E) = 0 and is
referred to as good reduction.
• Ē/Fp has a node. This happens if the polynomial x3 + ax + b (mod p) has a
unique double root and is referred to as multiplicative reduction.
• Ē/Fp has a cusp. This happens if the polynomial x3 + ax + b (mod p) has a
triple root and is referred to as additive reduction.

Moreover, the subset of non-singular points on Ē have a natural group structure.

Remark 3.1. If E has good reduction then it does so over any extension of Qp also,
and the same is true of multiplicative reduction. On the other hand, additive reduction
becomes either good or multiplicative after a �nite extension. In fact, as p 6= 2, any
rami�ed quadratic extension of the splitting �eld of x3 + ax+ b su�ces.

For general curves C/Qp we have a similar picture to the one above, but we need
some more involved theory to describe it.
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3.2. Models of curves. As before, let K be a �nite extension of Qp, OK its ring of
integers and k its residue �eld. Fix a nice curve C/K.

De�nition 3.2. A model of C is a scheme C/OK , �nite type, �at and proper2 over
OK , and equipped with a speci�ed isomorphism

C ×OK
K

∼−→ C

of schemes over K. We refer to C ×OK
K as the generic �bre of C, and de�ne its special

�bre to be the k-scheme

C = C ×OK
k.

The picture is as follows (genera added to illustrate how arithmetic genus is presrved
when passing to the special �bre):

Example 3.3. Let E/Qp be an elliptic curve say with minimal Weierstrass equation
E : y2 = x3 + ax+ b, a, b ∈ Zp. Then we can consider the scheme

E : {y2z − x3 − axz2 − bz3 = 0} ⊆ P2
Zp

which is a model of E. Its special �bre is the curve Ē above (along with the usual point
at in�nity). We will refer to this as the minimal Weierstrass model.

For elliptic curves the minimal Weierstrass model gives a `best' model of E over Zp.
In some sense, it's the model which gives the special �bre the best chance of being an
elliptic curve over Fp. In general, we want to �nd an equation free method for specifying
a `best' or a least `not that bad' model of a curve.
There are, broadly, two ways to go:

• Insist that the scheme C/OK is regular (`smooth as a surface').

2Roughly, �atness ensures that the resulting reduction retains information about C (such as being
connected, having dimension 1, having arithmetic genus equal to the genus of C) and properness
ensures projectivity of the reduction and the existence of a reduction map on points.
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• Ask that the special �bre be `not too bad'. The usual thing to ask for is that
it be `semistable' (the analogue of the special �bres of good or multiplicative
elliptic curves).

The �rst of these is always possible and in fact there is a minimal such model (assum-
ing that C has genus at least 1), the minimal regular model3. This is a fundamental
object however the special �bres of these models can still be quite complicated. By
contrast, semistable curves (to be discussed shortly) are all quite simple, however it
is not always the case that a given curve has a semistable model. That said, one can
always �nd one over a �nite extension of K in which case there is a minimal such (now
assuming that C has genus at least 2). Moreover, when such a model can be found the
minimal regular model has semistable special �bre also. We will focus on semistable
curves, as they are easier to work with and are all that is needed for many problems.
However, there are still cases when one needs to work with a regular model instead and
computing (with) these models is an important topic which we will not discuss further.
The best possible situation, which is an instance of both cases above, is when the

special �bre is in fact a nice curve. Indeed, nice curves are in particular semistable and
when the special �bre is a nice curve the structure map C → SpecOK is smooth whence
C is regular.

De�nition 3.4. We say that C has good reduction if there is a model C of C whose
special �bre is a nice curve over k.

Example 3.5. Note that:

• If E is an elliptic curve then this is consistent with what we had previously
(at least, if an elliptic curve has good reduction in the �rst sense, then it also
has good reduction in the second; the converse is also true but not immediately
obvious).
• Suppose C : y2 = f(x) is a hyperelliptic curve over Qp, p 6= 2, and suppose
that f(x) ∈ Zp[x] is such that ordp(∆(f)) = 0 where ∆(f) is the discriminant
of f(x). Then we may glue the a�ne schemes

U1 = SpecZp[x, y]/(y2 − f(x))

and

U2 = SpecZp[w, z]/(z2 − w2g+2f(1/w))

along x = 1/w and y = wg+1z over the open subsets x 6= 0 and x 6= 0 re-
spectively. The resulting scheme is a model of C whose special �bre is the nice
hyperelliptic curve given by the equation y2 = f̄(x), where f̄(x) is the reduction
of f(x) modulo p.

3Formally, we say a regular model C for C is minimal if for every other regular model C′ for C, the
map between their generic �bres corresponding to the identity on C extends to a morphism C′ → C.
One can show that there always exists a regular model of C that is minimal in this sense, which is
necessarily unique. This is the minimal regular model of C.
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Remark 3.6. One can show that if C has genus at least 1 and C and C ′ are models of C
with good reduction, then (as follows from the existence of the minimal regular model)
C and C ′ are isomorphic over Zp.
3.3. The structure of singular curves. The aim of this subsection is to motivate
and de�ne semistable curves, and study their properties. To begin with suppose k = k̄
and letX be a projective, reduced, connected curve (possibly singular and with multiple
irreducible components). Denote by Xsing the set of singular points of X.

De�nition 3.7. The normalisation of X, X̃, is the disjoint union of the normalisations
of the individual components (and is thus a disjoint union of nice curves). It comes
with a natural morphism π : X̃ → X which is an isomorphism away from Xsing.

The picture is as follows:

Remark 3.8. Locally in some a�ne U = Spec(A) ⊆ X, the irreducible components
which intersect U correspond to the minimal prime ideals p1, ..., pr of A. Then Ũ =
π−1(U) is

Spec

(
r∏
i=1

Ã/pi

)
,

where Ã/pi is the integral closure of A/pi in its �eld of fractions. The morphism π is
given by the natural inclusion of A into the direct product.

To measure `how singular' X is, we measure the di�erence between X and its nor-
malisation X̃. This is done by considering the short exact sequence of sheaves

(3.9) 0 −→ OX −→ π∗OX̃ −→ S −→ 0

with S de�ned by the sequence. Since π is an isomorphism away from Xsing it's a
skyscraper sheaf supported on Xsing.

De�nition 3.10. For x ∈ X a closed point, we de�ne

δx := dimkSx = dimkÕX,x/OX,x
where here ÕX,x is the product of the normalisations of OX,x/pi where the pi are the
minimal prime ideals of OX,x; they correspond to the irreducible components of X
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passing through x. We note that x is smooth if and only if δx = 0. We also de�ne
mx := #π−1(x). We say that x is a ordinary double point, or a node, if mx = 2 and
δx = 1.

Remark 3.11. One can show that x ∈ X is an ordinary double point if and only if the
completed local ring at x is isomorphic to k[[u, v]]/(uv). That is, the completed local
ring is isomorphic to the completed local ring at the origin of the curve given by the
two coordinate axes in A2. This is the picture of what an ordinary double point looks
like to have in mind.

Example 3.12 (Plane curves). Let X be an a�ne plane curve given by an equation
{f(x, y) = 0} ⊆ A2 and suppose that (0, 0) ∈ X. Then we can write

f(x, y) = a1x+ a2y + b1x
2 + b2xy + b3y

2 + ...

Then (0, 0) is a singular point of X if and only if a1 = 0 = a2, and an ordinary double
point if and only if the discriminant

b2
2 − 4b1bb3

of the quadratic term is non-zero.

Remark 3.13. The structure of a singular point is a local property so if x ∈ X has an
open neighbourhood isomorphic to an open neighbourhood of a plane curve then we
can still use the above example.

De�nition 3.14. We say that X is semistable if (it is reduced and) all its singular
points are ordinary double points. If k is no longer assumed algebraically closed, we
say that a curve X/k is semistable if X if Xk̄ is semistable.

Example 3.15. If E/Qp is an elliptic curve, and Ē/Fp is the reduction of its minimal
Weierstrass equation, then the example above shows that Ē is semistable if and only if
E has good or multiplicative reduction.

Example 3.16. Let C : y2 = f(x) be a possibly singular `hyperelliptic' curve over k
where deg(f) > 2 and char(k) 6= 2. Then C is semistable if and only if f(x) has no
roots of multiplicity higher than 2.

A slight re�nement of the notion of a semistable curve is a stable curve.

De�nition 3.17 (Stable curves). If k = k̄, we say that X is stable if it is semistable and
if X has arithmetic genus at least 2, and any irreducible component of X isomorphic
to P1

k intersects the other irreducible components in a least 3 points. For general k, we
say that X is stable if Xk̄ is.

Remark 3.18. Equivalently, a semistable curve over an algebraically closed �eld is stable
if and only if its automorphism group is �nite.
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3.4. The dual graph of a semistable curve. A useful invariant of a semistable
curve (as we will see later) is its dual graph, which is de�ned as follows.

De�nition 3.19 (Dual graph). Let k = k̄ and X be a semistable curve over k. We
de�ne the dual graph ofX to be the graph whose vertices are the irreducible components
of X, and such that vertices v1 and v2 (where v1 = v2 is allowed) are joined by one
edge for each singular point lying on both of the corresponding irreducible components.
Note that loops and multiple edges are allowed.

Example 3.20. Suppose char(k) 6= 2 and consider the singular hyperelliptic curve

y2 = x2(x− 1)2(x+ 1)2.

This consists of two irreducible components intersecting in 3 (ordinary double) points.

Its dual graph is the `banana graph':

Example 3.21. Suppose now that char(k) 6= 2, 3 and consider the singular hyperelliptic
curve

y2 = x2(x− 1)2(x+ 1)2(x− 2).

Now this consists of one irreducible component with 3 nodes on it.

Its dual graph is:
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3.5. Semistable models. We now return to the case where K is a �nite extension
of Qp and C/K is a nice curve. We say C has semistable reduction over K if there is
a model C/OK for C whose special �bre is a semistable curve over the residue �eld k.
We call such a model a semistable model for C. If additionally the special �bre of C is
stable we call this a stable model.
Whilst it's not true that all curves admit semistable models (cf. elliptic curves with

additive reduction) the power of the theory of semistable models lies in the following
deep result of Deligne�Mumford.

Theorem 3.22 (Semistable reduction theorem). Let C/K be a nice curve. Then there
is a �nite extension L/K such that C has semistable reduction over K.

A slight re�nement which follows fairly quickly from this is:

Proposition 3.23. Let C/K be a nice curve of genus at least 2 and L/K any �nite
extension where C has semistable reduction. Then C has a stable model C over OL
which is unique up to OL-isomorphism. Moreover, if F/L is a further �nite extension,
then C ×OL

OF is the stable model of C over F .

In particular, we can talk about the stable reduction of C.

3.6. Relationship between the stable model and the minimal regular model.

In general, if (K is a �nite extension of Qp and) C/K is a semistable curve, its minimal
regular model is readily obtained from its stable model by some simple blow ups. To
explain this, let C/OK be the stable model of C. If a closed point x ∈ C is non-regular
then it is necessarily a singular point of the special �bre, and hence corresponds to an
ordinary double point on the special �bre C̄. If we assume that both x and the two
points lying over x in the normalisation of C̄ are de�ned over k, it follows formally from
the fact that the completed local ring at x ∈ C̄ is isomorphic to k[[u, v]]/(uv), that the
completed local ring at x ∈ C is isomorphic to OK [[u, v]]/(uv − c) for some c ∈ OK of
valuation ≥ 1. The valuation of c, say n, is called the thickness of the ordinary double
point. One sees that x is a regular point of C if and only if n = 1. When n > 1 one can
repeatedly blow up at x to resolve the singularity. If this is done minimally, the result
is given by replacing x by a chain of n−1 copies of the projective line, each intersecting
transversally. See [Liu02, Corollary 10.3.25] and the surrounding discussion for more
details. The picture is as follows:
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In general, the condition that x and the points over it in the normalisation be de�ned
over k is always satis�ed after �nite extension of k. If one then follows the above
procedure at every ordinary double point of C̄ this yields the minimal regular model of
C/K. Since the minimal regular model commutes with unrami�ed extension, we can
always make an unrami�ed extension of K to make this true. As a corollary we �nd:

Corollary 3.24. If C/K has semistable reduction its minimal regular model is a
semistable model for C.
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4. Exercises for lecture 2

4.1. Justify Example 3.12: let X be an a�ne plane curve over an algebraically closed
�eld k, given by an equation {f(x, y) = 0} ⊆ A2 and suppose that (0, 0) ∈ X. Write

f(x, y) = a1x+ a2y + b1x
2 + b2xy + b3y

2 + ...

Show that (0, 0) is a singular point of X if and only if a1 = 0 = a2. Supposing (0, 0) is
singular, compute the completed local ring at (0, 0) in the case that the discriminant

b2
2 − 4b1b3

of the quadratic term is non-zero, and deduce that (0, 0) is an ordinary double point.

4.2. Let k be an algebraically closed �eld. The aritmetic genus pa(X) of a (projective,
reduced, connected) curve X/k is de�ned to be the k-dimension of H1(X,OX). Show
that if X is semistable then

pa(X) = #edges of G −#vertices of G + 1 +
∑

Γ irred comp of X

g(Γ̃)

where G is the dual graph of X, and g(Γ̃) denotes the genus of the normalisation of Γ.
(One can rewrite the sum #edges of G −#vertices of G + 1 as the rank of the �rst

homology group H1(G,Z) of G.)

4.3. Let p be odd and C/Qp : y2 = f(x) be a hyperelliptic curve where f(x) is monic
and has coe�cients in Zp. Suppose that the discriminant of f(x) has p-adic valuation
1. Show that the scheme over Zp given by glueing the usual charts

Spec Zp[x, y]/(y2 − f(x))

and
Spec Zp[w, z]/(z2 − w2g+2f(1/w))

via x = 1/w and y = wg+1z gives both a regular4 and semistable model of C (in
particular, this is the minimal regular model of C).

4By de�nition, a scheme X is regular if for each x ∈ X the local ring OX,x at x is regular, i.e. if its
dimension is equal to the OX,x/mx-dimension of mx/m

2
x, where mx is the maximal ideal of OX,x. To

check regularity it su�ces to check this for x a closed point.
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5. Lecture 3: Semistable models of hyperelliptic curves and Néron

models of abelian varieties

5.1. Semistable models of hyperelliptic curves: introduction. Again, K is a
�nite extension of Qp, ring of integers OK , residue �eld k. The aim of this lecture is
to give some examples of computing the (potential) stable reduction of curves. Our
examples will come from hyperelliptic curves over �nite extensions of Qp with p odd.
We will just state the results rather than giving proofs, but the idea is as follows. By
de�nition a hyperelliptic curve comes equipped with a degree 2 morphism φ : C → P1

K .
Let B be the branch locus of this morphism, i.e. the points of P1

K above which this map
rami�es. If C is given by an equation y2 = f(x) then the map φ is projection to the
x coordinate and B is the collection of roots of f(x), along with the point at in�nity
if f(x) has odd degree. The scheme P1

OK
gives a regular proper semistable model of

P1
K . Taking the closure of B in P1

OK
gives a divisor on P1

OK
. The idea is to blow up

at closed points on the special �bre of P1
OK

to gradually improve this divisor. At any
stage of this process we may take the normalisation of the resulting model of P1

K in
K(C). This will give a model of C and, if the new divisor is su�ciently nice, will be
regular/semistable/stable (of course, the last two will in general need an extension of
K).
This approach works more generally to produce (potential) stable models of cyclic

covers of the projective line (for residue characteristic di�erent from the degree of the
cover) and has been described algorithmically for superelliptic curves by Bouw�Wewers
in [BW17]. See https://pypi.org/project/mclf/ for a sage implementation in certain
cases. The particular framework described below is set out in [DDMM18], although we
make several simplyfying assumptions.

5.2. Setup. Take p to be odd. Let πK be a uniformiser for K and denote by v : K× →
Z the normalised valuation. Let C : y2 = f(x) be a hyperelliptic curve over K of genus
g ≥ 2, so that f(x) is a squarefree polynomial of degree at least 5. We will describe the
stable model of C (possibly over an extension of K) by describing both the dual graph,
and the normalisation of each irreducible component, of its special �bre. The answer
will be in terms of the combinatorial data set out below.

5.3. Clusters. Denote by R the set of roots of f(x), and cf the leading coe�cient of
f(x), so that C has equation

C : y2 = cf
∏
r∈R

(x− r).

Assumption 5.1. We assume:

(1) The set of roots R is contained in K. If this is not the case we simply replace
K by a �nite extension for which this does hold.

(2) We assume that |R| = 2g + 1. Given (1) this can be achieved by a change of
variables sending a point (r, 0) (r a root of f(x)) to in�nity.
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De�nition 5.2. A cluster is a nonempty subset of R cut out by a disc. That is, a
nonempty subset of the form

s = {r ∈ R | v(r − z) ≥ n}
for some z ∈ K and n ∈ Z (note that if we wish we can without loss of generality take
z to be a root of f(x)). If s is a cluster of size at least 2 then amongst all such pairs
(z, n) `cutting out' s, the maximal n is called the depth of s, denoted ds.

Note that R and each singleton {r} for r ∈ R are clusters.

Example 5.3. Consider the hyperelliptic curve over Qp with equation

C : y2 = x(x− p)(x− p3)(x+ p3)(x− 1)(x− 1− p2)(x− 1 + p2).

Then
R = {1, 1 + p2, 1− p2, p, 0, p3,−p3}.

The clusters of size at least 2 are

R, {1, 1 + p2, 1− p2}, {p, 0, p3,−p3}, and {0, p3,−p3}.
Their depths are 0, 2, 1 and 3 respectively. It's convenient to represent this in the
cluster picture shown below

Assumption 5.4. We make one last simplifying assumption on C.

• Assume that there is no cluster of size 2g.

This can also always be satis�ed after a suitable change of variables (potentially after
an appropriate additional �eld extension), but will not go into this. At any rate, it only
serves to eliminate special cases in the forthcoming statement.

Notation 5.5. We also introduce the following terminology:

• if s′ ( s is a maximal subcluster we say that s′ is a child of s and that s is the
parent of s′. We denote this as s′ < s and write s = P (s′).
• a cluster s is called a twin if |s| = 2.
• a cluster s is odd if |s| is odd, even if |s| is even, and übereven if each child of s
is even.

A convenient way of representing the information encoded in the clusters is in the
following �nite tree.

De�nition 5.6 (The tree TC). Let TC be the �nite tree with

• one vertex vs for each cluster of size at least 3, coloured yellow if s is übereven
and blue otherwise,
• an edge from vs to vP (s) for each cluster s 6= R, coloured blue if s is odd, and
coloured yellow if s is even.
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5.4. The stable model. In the situation of the previous subsection the following
proposition describes the (special �bre of the) stable model of C.

Proposition 5.7. We have:

(i) The curve C/K is semistable if and only if, for each cluster s of size at least 3,
the quantity

νs = v(cf ) + |s|ds +
∑
r/∈s

v(zs − r)

is even, where here zs is any element of s.

Suppose now that C/K is semistable.

(ii) Let GC be the graph given by (in order)
� taking two disjoint copies of TC and glueing them along their common blue
parts,

� for each twin s, adding a loop to the unique vertex of GC over vP (s) if P (s)
is not übereven, and adding an edge joining the two vertices of GC over vP (s)

if P (s) is übereven.
Then the special �bre of the stable model of C has dual graph GC.

(iii) The normalisation of the component Γs corresponding to a vertex vs of GC is the
hyperelliptic curve over k with equation

Γs : y2 = cs
∏

odd o<s

(x− reds(o))

where cs ∈ k× is given by

cs =
cf

πv(cf )

∏
r/∈s

zs − r
πv(zs−r)

(mod πK)

for zs any element of s, and

reds(o) =
zo − zs
πds

(mod πK)

for zo any element of o.

Remark 5.8. The condition that νs be even for all clusters s of size at least 3 is auto-
matically satis�ed if K is replaced by a rami�ed quadratic extension of K.

Remark 5.9. If s is an übereven cluster then there are two vertices in GC lying over the
vertex vs of TC . Correspondingly, the equation for Γs de�nes two disjoint projective
lines.

Example 5.10. Returning to Example 5.3 write the clusters as

R, s1 = {1, 1 + p2, 1− p2}, s2 = {p, 0, p3,−p3}, and s3 = {0, p3,−p3}.
We compute νR = 0, νs1 = 3 · 2 + 0 = 6, νs2 = 4 · 1 = 4 and νs3 = 3 · 3 + 1 = 10 so that
C/Qp is semistable. The graph TC is shown below (with yellow replaced by red due to
my lack of a yellow pen):
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Taking the double cover rami�ed over the blue part gives the graph GC as shown:

Note that the geometric genus of the hyperelliptic curve Γs of Proposition 5.7 is the
number g(s) de�ned by

#{odd children of s} ∈ {2g(s) + 2, 2g(s) + 1}.

In particular the components corresponding to R and s2 are necessarily isomorphic to
P1. One easily computes from Proposition 5.7 (iii) that the two remaining components
are both given by the equation y2 = x3 − x and have genus 1. The �nal picture is as
follows:

5.5. The minimal regular model of a semistable hyperelliptic curve. In the
contex of Proposition 5.7 we can additionally describe the thickness of each node in
terms of the clusters and hence describe the minimal regular model of a semistable
hyperelliptic curve C/K.

Lemma 5.11. Let GC be as in Proposition 5.7 and let e be an edge of GC corresponding
to clusters s < P (s), where s has size at least 2. Writing δs = dP (s) − ds the thickness
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of the corresponding node is

n(e) :=


δs/2 e came from a blue edge,

δs e came from a yellow edge,

2δs s a twin.

In particular, the dual graph of the minimal regular model of C is obtained from GC by
replacing each edge e by a path of length n(e).

Remark 5.12. The condition for semistability in Proposition 5.7 (i) forces δs/2 ∈ Z in
the �rst of the three cases above.

Example 5.13. Returning to Example 5.3 we �nd that each node has thickness 1, so
that the stable model and minimal regular model coincide.

5.6. The Néron model of an abelian variety. We now change tack completely
and move on from models of curves to models of abelian varieties. It turns out that
for an abelian variety there is always a canonical `best model', the Néron model. As
usual, let K be a �nite extension of Qp (for p arbitrary now). The standard reference
for Néron models is the book [BLR90].

Theorem 5.14. Let A/K be an abelian variety. Then there exists a smooth5, separated,
�nite type group scheme A/OK with generic �bre A, satisfying the universal property
(the Néron mapping property):
for each smooth OK-scheme Y, any K-morphism YK → A extends uniquely to an
OK-morphism Y → A. We call A the Néron model of A.

Example 5.15. Let E/K be an elliptic curve with good reduction. Then the minimal
Weierstrass equation for E gives the Néron model of E.

Remark 5.16. Note that, unlike for curves, we have dropped properness in favour of
smoothness, although the Néron mapping property forces a weak version of the valuative
criterion for properness. In fact, the Néron model is proper if and only if its special
�bre is an abelian variety over k.

De�nition 5.17. The reduction of an abelian variety over K is the group variety Ak =
A×OK

k over k. If this is an abelian variety then we say that A/K has good reduction.
The identity component of the Néron model, denoted A0, is the open subscheme whose
special �bre is the connected component of the identity (Ak)0 of Ak (i.e. remove the
closed subset consisting of the union of the (�nitely many) components of the special
�bre not containing the identity element).

Remark 5.18. Note that the Néron mapping property gives A(K) = A(OK) giving us a
reduction homomorphism A(K) → Ak(k). We write A0(K) for the points reducing to
A0
k(k). The group A(K)/A0(K) is �nite and we de�ne the Tamagawa number c(A/K)

5We take as our de�nition that a morphism f : Y → Z is smooth if it is �at and if each �bre
Y ×Z k(z) (z ∈ Z) is geometrically regular.
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to be its order. Alternatively, if one de�nes Φ := Ak/A0
k (a �nite etale group scheme

over k) then one has

c(A/K) = Φ(k̄)Gal(k̄/k).

5.7. Neron models of Jacobians. Often, one can use the existence of the Néron
model as a black box, and prove everything via the universal property. However, from
a computational viewpoint this is not that satisfactory. For Jacobians however the
situation is quite good since it turns out that the models of curves we have been working
with are quite closely related to the Néron model of the Jacobian of their generic �bre.
A precise result is as follows.

Theorem 5.19. Let C/K be a nice curve. Suppose that either

• C/OK is a semistable model of C,

or

• C/OK is a regular model for C and the greatest common divisor of the multi-
plicities of the irreducible components of the special �bre of C is 1.

Then Pic0
C/OK

is canonically isomorphic to the identity component of the Neron model
of the Jacobian of C. (The map is by extending the one on the generic �bre).

Proof. The �rst part is [BLR90, Theorem 9.5.4 (b)] whilst op. cit. Corollary 9.7.2 is
the second part. �

Corollary 5.20. Let C/K be a nice curve and let C/OK be a model satisfying one of
the two cases in Theorem 5.19. Then the special �bre of the identity component of the
Néron model of the Jacobian of C is Pic0

Ck/k. In particular, if C has good reduction and
C is a model for C with nice special �bre, then the special �bre of the Néron model of
the Jacobian of C is the Jacobian of the special �bre of C.

Remark 5.21. The component group, and hence Tamagawa number, can be understood
via [BLR90, Theorem 9.6.1] but this needs a regular model.

5.8. Néron models of elliptic curves. We close this section by discussing the situa-
tion for elliptic curves. Either by showing that it satis�es the Néron mapping property,
or from Raynaud's theorem, it follows that the Néron model of an elliptic curve is the
smooth part of its minimal regular model. In particular it follows e.g. from Tate's
algorithm that the identity component of the Neron model is the smooth part of the
minimal Weierstrass model. We have the following picture for an elliptic curve with
type In reduction:
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6. Exercises for Lecture 3

6.1. Let p > 3 be a prime and C/Qp the hyperelliptic curve

C : y2 = x(x− p)(x− 2p)(x− 3p)(x− 1)(x− 1 + p)(x− 2).

Show that C/Qp has semistable reduction, compute the dual graph of its special �bre,
and the normalisations of each of the components.

6.2. Find a curve C/Q5 which has semistable reduction, and such that the special �bre
of its stable model consists of two elliptic curves meeting at a single point.

6.3. Let K be a �nite extension of Qp, ring of integers OK , residue �eld k. Let C/K
be a semistable curve, C/OK its minimal regular model, and G the dual graph of (the
base change to k̄ of the special �bre of) C. Let L/K be a �eld extension of rami�cation
degree e, and let C ′ and G ′ denote the corresponding objects over L. Show that G ′ is
obtained from G by replacing each edge with a path of length e.
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7. Lecture 4: Describing the Tate module of Jacobians

LetK be a �nite extension of Qp and C/K a nice curve. Our aim is to understand the
l-adic Tate module of Jac(C) for l 6= p. We consider the case where C/K is semistable,
although the general case can be deduced from this by keeping careful track of the
action of the Galois group of some (Galois) extension over which C attains semistable
reduction. Note that by the semistable reduction theorem, for general C this still
describes the restriction of the Tate module to a �nite index subgroup of GK .

7.1. Semistable abelian varieties. As well as a notion of semistability for curves
there is a corresponding notion of semistability for abelian varieties.

De�nition 7.1 (Semistable abelian varieties). Let A/K be an abelian variety and
A/OK its Néron model. We say that A has semistable reduction over K if the special
�bre Ak̄ of A is an extension of an abelian variety by a torus. In the special case where
Ak̄ is an abelian variety we say that A has good reduction.

Example 7.2. An elliptic curve is semistable precisely when it has good or multiplica-
tive reduction.

Remark 7.3. For the Jacobian Jac(C) of a nice curve of genus at least 2, one can show
that Jac(C) is semistable if and only if C is. We'll (almost) see how to prove the
implication `C semistable⇒ Jac(C) semistable' later in this lecture (see Remark 7.15).

Remark 7.4. As for elliptic curves, the Néron�Ogg�Shafarevich criterion states that
A has good reduction if and only if Tl(A) is unrami�ed for some l di�erent from the
residue characteristic of K. Similarly, one can show that A has semistable reduction if
and only if the inertia group IK acts unipotently on Tl(A).

Remark 7.5. Even when A/K is semistable the Néron model still does not commte
with rami�ed base change (consider an elliptic curve with multiplicative reduction - the
order of its component group gets multiplied by the rami�cation degree) but it is true
at least that when A/K is semistable then the identity component of the Néron model
commutes with base change. For Jacobians of curves this follows from the corresponding
fact for the stable model, along with Theorem 5.19.

7.2. The Tate module of an abelian variety.

7.2.1. Abelian varieties with good reduction. Let A/K be an abelian variety with good
reduction and let A/OK be its Néron model. Then its special �bre Ā is an abelian
variety over k of dimension g also. For any l 6= char(k) we have

Ā[ln] ∼= (Z/lnZ)2g.

On the other hand (since Néron models commute with unrami�ed base change) we have
a reduction map

A(Knr)[ln]→ Ā[ln]
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which is surjective by Hensel's lemma. Simply by counting we deduce that A[ln] ⊆
A(Knr) (i.e. all l-power torsion in unrami�ed) and that reduction gives an isomorphism
A[ln] ∼= Ā[ln]. In particular, Tl(A) is unrami�ed and we have a canonical isomorphism

(7.6) Tl(A) ∼= Tl(Ā)

which is equivariant for the action of Gal(Knr/K) ∼= Gal(k̄/k).
In particular, if A = Jac(C) is the Jacobian of a nice curve C, and C has good

reduction (in general this is strictly stronger than Jac(C) having good reduction) then
we have a canonical isomorphism

(7.7) Tl(Jac(C)) ∼= Tl(Jac(C̄))

equivariant for the action of Gal(Knr/K) ∼= Gal(k̄/k), where here C is the model of
C realising the good reduction. This means that the local L-polynomial of Jac(C)
is completely determined by the action of Frobenius on H1

et(C̄k̄,Zl), and this may be
understood by the Weil conjectures in terms of the number of points on C̄ over �nite
extensions of k. See Andrew Sutherland's course for more on this.

Remark 7.8. An alternative viewpoint of (7.7) is that it follows as a special case of the
smooth and proper base change theorems in étale cohomology applied to the scheme
C/OK (which is smooth and proper over OK under our good reduction assumption).

7.2.2. Semistable abelian varieties. We now move on to the case where A/K has
semistable but not necessarily good reduction. It turns out, though it is harder to
prove, that the analogue of (7.6) is that there is a Gal(Knr/K) = Gal(k̄/k) equivariant
isomorphism

(7.9) Tl(A)IK ∼= Tl(Ā0)

where here IK denotes the inertia group of K. In fact, this holds in general without
the assumption that A/K is semistable though we will not persue that further.

7.3. The Picard group of semistable curves. In light of (7.9), we want to describe
Tl(Ā0) in the case that A = Jac(C) is the Jacobian of a nice curve C/K. Supposing
that C/K is semistable, by Theorem 5.19 we have Tl(Ā0) = Tl(Pic

0(C̄)) where C/OK is
the stable model of C. It is this group which we now describe. We begin by describing
the Picard group of an arbitrary semistable curve X over an algebraically closed �eld.
It will be convenient to begin with a slight re�nement of the de�nition of the dual

graph.

De�nition 7.10 (Dual graph, take two). As usual, let π : X̃ → X be the normalisation
morphism and write

S = set of singular (ordinary double) points of X,

T = set of connected components of X̃,
R = π−1(S); this comes with two canonical maps

φ : R→ S, P 7→ π(x),

ψ : R→ R, P 7→ component of X̃ on which x lies.
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The dual graph G ofX has vertex set T and edge set S. R is thought of as the set of edge
endpoints, and the maps φ and ψ specify adjacency. Note that a graph automorphism
of G (which we allow to permute multiple edges and swap edge endpoints) is precisely
the data of bijections R→ R, S → S and T → T that commute with φ and ψ.

The following proposition reduces understanding the Tate module TlPic
0(X) asso-

caited to a semistable curve, to understanding the Tate module of the Jacobians of the
normalisations of its irreducible components, along with the (co)homology group of its
dual graph.

Proposition 7.11. Let X be a semistable curve over k = k̄ and G its dual graph. Then
for each prime l 6= char(k) we have an exact sequence

0 −→ H1(G,Z)⊗Z Zl(1) −→ TlPic
0(X) −→

∏
Γ∈J

Tl(Jac(Γ)) −→ 0

where H1(G,Z) denotes the �rst singular cohomology group6 of the graph G.

Proof (sketch). We consider (3.9) where we replace the structure sheaf with the invert-
ible elements of the structure sheaf. Thus we obtain

0 −→ O×X −→ π∗(O×X̃) −→ F −→ 0

where again F is de�ned by the sequence and is a skyscraper sheaf supported on Xsing.
The associated sequence for cohomology gives

0 −→ O×X(X) −→ O×
X̃

(X) −→ F(X) −→ Pic(X) −→
∏
Γ∈T

Pic(Γ) −→ 0.

Now O×X(X) = k× since X is proper and connected, whilst O×
X̃

(X) = (k×)S (functions

from S to k×), and the map O×X(X) −→ O×
X̃

(X) sends an element of k× to the constant

function with this value. On the other hand, F(X) = ⊕x∈SFx and using the fact that
each element of S is an ordinary double point we �nd that

F(X) = coker
(

(k×)S
φ∗−→ (k×)R

)
where φ∗ is pullback of functions. Bringing the above discussion together, and restrict-
ing to degree 0 line bundles, we have an exact sequence

(7.12) 0 −→ k×
∆−→ (k×)T

ψ∗
−→ (k×)R

φ∗ ((k×)S)
−→ Pic0(X) −→

∏
Γ∈T

Jac(Γ)(k) −→ 0

where ∆ is the diagonal embedding.
On the other hand, if we write G = U ∪ V where U is the union of open edges and

V is the union of small open neighbourhoods of the vertices then Mayer�Vietoris gives

(7.13) 0 −→ H1(G,Z) −→ ZR (φ,ψ)−→ ZS ⊕ ZT −→ Z −→ 0

6We view the graph G as a topological space in the obvious way, by thinking of each edge as an
interval on the real line.
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since H0(U) = ZS, H0(V ) = ZT , H0(U ∩ V ) = ZR and all higher homology groups
vanish. Applying Hom (−,Zl(1)) to this sequence, and comparing the result with the
sequence of Tate modules obtained from (7.12), gives the result. �

Remark 7.14. If each component of X has arithmetic genus 0, as is the case for the
curves of Examples 3.20 and 3.21, then the proposition gives a canonical isomorphism

H1(G,Z)⊗Z Zl(1) ∼= TlPic
0(X).

Remark 7.15. The exact sequence (7.12) describes Pic0(X) on the level of k-points.
However, one can ramp this argument up to give a description of the identity component
of the relative Picard functor Pic0

X/k as an algebraic group. In fact, this shows that

Pic0
X/k is an extension of an abelian variety, namely

∏
Γ∈I Jac(Γ), by a torus of dimension

equal to the rank ofH1(G,Z). In particular, this shows that the Jacobian of a semistable
curve over a local �eld has semistable reduction.

7.4. Computation of local factors of L-functions. Now return to the case where
K is a �nite extension of Qp, l a prime 6= p, and C/K a nice curve with semistable
reduction, and denote by J its Jacobian. Fixing a semistable model C/OK for C, and
let G be the dual graph of Ck̄. We get as a corollary of the above discussion (the Gk-
action on G coming from the actions on the sets S, T and R above, and Γ denotes an
irreducible component of Ck̄ and Γ̃ its normalisation):

Corollary 7.16. Denoting C̃k̄ the normalisation of Ck̄, we have a short exact sequence
of Gk-modules

0 −→ H1(G,Z)⊗Z Zl(1) −→ Tl(J)IK −→
⊕

Gk−orbs of cmps Γ

IndGk

Stab(Γ)Tl(Jac(Γ̃)) −→ 0.

Recall that the local L-polynomial of J/K de�ned as

L(J/K, T ) = det
(
1− Frob−1

K T | ((VlJ)∨)IK
)
.

Corollary 7.17. We have

L(J/K, T ) = det

(
1− Frob−1

K T
∣∣ H1(G,Ql)⊕

⊕
Gk−orbs of cmps Γ

IndGk

Stab(Γ)Tl(Jac(Γ̃))

)
.

Proof. The Weil pairing Tl × Tl → Zl(1) gives

Tl(J)∨ ∼= Tl(J)(−1)

where the (−1) denotes a Tate twist. Since Zl(1) is unrami�ed we can take inertia
invariants to �nd

Tl(J)∨ ∼= Tl(J)IK (−1).

It just remains to twist the statement of the above corollary by −1, ⊗Zl
Ql and note

that

• characteristic polynomials depend only on the semisimpli�cation of a represen-
tation
• H1(G,Ql) and H1(G,Ql) are isomorphic representations.
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�

Example 7.18. As a (very) special case of the above, take an elliptic curve E over K
with multiplicative reduction. Take as our semistable model the minimal Weierstrass
model, so that its special �bre is a nodal cubic curve. In particular, the Jacobian
of the normalisation of the special �bre is (the Jacobian of P1) 0, and H1(G,Ql) is
isomorphic to Ql with Gk acting trivially if E has split multiplicative reduction, and
with Frob acting as multiplication by −1 in the case of non-split reduction. Applying
the corollary we �nd

L(E, T ) =

{
1− T E has split multiplicative reduction

1 + T E has non-split multiplicative reduction.
.
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8. Exercises for lecture 4

8.1. Let C/Q be the genus 3 hyperelliptic curve

C : y2 = x
(
x2 − 2x− 8

) (
x4 − 16x2 + 100

)
.

Compute the local factor of the L-function of the Jacobian of C over Q3.
Hint: for a `singular hyperelliptic curve' X : y2 = f1(x)f2(x)2 over a �eld k, where

f1(x) and f2(x) are coprime square free polynomials, the normalisation X̃ of X is the
the curve

X̃ : y2 = f1(x)

and the normalisation map π : X̃ → X is given by

π(x, y) = (x, yf2(x)) .

8.2. For an elliptic curve E having split multiplicative reduction over a local �eld K,
a result of Tate gives an isomorphism

E(K̄) ∼= K̄×/qZ,

equivariant for the natural GK-actions on each side, where q ∈ K is an element of
valuation ≥ 1. Use this to give another proof that the local factor of the L-function of
E/K is

L(E/K, T ) =

{
1− T E has split multiplicative reduction

1 + T E has non-split multiplicative reduction.
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